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Abstract 

 Exploratory crystal growth is a versatile technique and one that can advance 

materials discovery.  Through exploratory crystal growth, it is possible to synthesize 

many new materials that can have applications in many fields, including solid-state 

lighting.  There exist many adaptations for exploratory crystal growth, including the use 

of alkali halide flux growth and hydroflux growth, both reported herein.  By changing 

variants in these techniques like reactant ratios, temperature, reaction profile, and, most 

importantly here, the flux compositions, it is possible to change the products formed or 

fine tune reactions for product purity. 

 For solid-state lighting applications, compounds that adopt colorless frameworks, 

like tungstates, germanates, and silicates are of interest.  Herein, we report on the 

synthesis, structure determination and physical property measurements of 

Na5Ln(OH)6WO4 (Ln = Er, Tm, Yb), Na5Ln4F[GeO4]4 (Ln = Pr, Nd), NaxLn10-x(SiO4)6O2-

yFy, CaxLn10-x(SiO4)6O2-yFy (Ln = Nd, Sm, Eu, Gd), Gd9.34(SiO4)6O2, 

K1.32Pr8.68(SiO4)6O1.36F0.64, Na5Ln4F[SiO4]4 (Ln = Pr, Nd, Sm-Tm), K5Pr4F[SiO4]4, 

K3LnSi2O7 (Ln = Sm, Y), Na3LnSi2O7 (Ln = Ho, Yb), NaLnSiO4 (Ln = La, Yb), 

K5Ln2Si4O13F (Ln = Y, Sc), and Cs3LnSi4O10F2 (Ln = Gd, Tb, Dy).  These new 

compositions have been studied for magnetic properties, second harmonic generation, 

and optical properties, including fluorescence quantum yield, when practical. 
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Antiferromagnetic ordering has been observed in Na5Tb4F[SiO4]4 and 

Na5Dy4F[SiO4]4.  The Na5RE4F[SiO4]4 (RE = Pr, Sm-Tm) series exhibits second 

harmonic generation and fluorescence has been observed in NaEu9(SiO4)6O2, 

Na1.5Eu8.5(SiO4)6OF, Eu9.34(SiO4)6O2, Gd9.34(SiO4)6O2, Na5Eu4F[SiO4]4, Na5Gd4F[SiO4]4, 

Na5Tb4F[SiO4]4, and K3YSi2O7.  Fluorescence quantum yield was measured on 

Na5Eu4F[SiO4]4, Na5Gd4F[SiO4]4, and Na5Tb4F[SiO4]4.  The optical properties are 

exciting as they indicate that a silicate material, composed of the earth abundant element 

silicon, may be able to be used as a framework for new potential phosphor coatings for 

light emitting diodes (LEDs).  Using silicate materials as new host structures could 

decrease the cost of LEDs. 
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Chapter 1 

Introduction to Materials Discovery of Complex Lanthanide Containing Oxides, 

Oxyhydroxides, and Oxyfluorides for Applications in Solid-State Lighting 
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 In the field of solid-state lighting (SSL), especially light-emitting diode (LED) 

technology, the current drive is to find new LED lighting technology that continues to 

decrease energy consumption while fixing the current LED limitations of low color 

rendering and high color temperature.1.1-1.3  Many different approaches have been 

proposed, however, in this research, the focus has been on synthesizing new, more 

efficient phosphor coating materials that address the current limitations of LEDs while 

also decreasing costs to consumers.  This chapter will explore the progress of solid-state 

lighting technology, why this research is focused on rare earth containing tetragen 

materials, and highlight new findings of dual purpose materials that both luminesce and 

strongly scintillate. 

 During the last decade, LEDs have become competitive in the market due to the 

many improvements in the color rendering and color temperature, the increased push 

towards more energy efficient lighting, and the decrease in the cost of a LED light 

bulb.1.3, 1.4  Despite the increase in LED sales, there are still many factors holding LED 

technology back from becoming the primary source of lighting.  

 True color rendering, or the ability of an artificial light to give the same coloring 

to an object that natural sunlight does,1.5 is essential for widespread application and has 

steadily been improving in LED technology, however, while LEDs are now an 80 – 95 on 

a scale of 100 where 100 is ideal, incandescent light bulbs are a 98 – 100.  In addition, the 

color temperature, which is best described as the cool (bluish) tint or warm (yellowish) 

tint of the light, is not as good in current generation LEDs as it needs to be.  With an ideal 

range of 2,700 – 3,200 K (warm light) where lower numbers are warmer and higher 

numbers are cooler, LEDs range from 2,700 – 6,500 K and incandescent bulbs range 
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from 2,400 – 2,900 K.  While LEDs are able to achieve the ideal color temperature range, 

those LED light bulbs are much more expensive than regular LED bulbs. 

 In order to convince consumers to switch their lighting from incandescent to a 

much more energy efficient LED source, which requires only about 16 % of the energy 

required for an incandescent, it is necessary for research to continue to improve the color 

rendering and color temperature while all the time decreasing the cost of the LED.  One 

way to resolve this issue is to develop a better phosphor coating material.   

LED lighting involves a semiconductor and a phosphor coating.  The 

semiconductor is a p-n junction where when a voltage is applied, the electrons on the n 

side recombine with the holes on the p side and release photons of a certain color 

wavelength, usually blue.1.6  These photons excite the phosphor coating, which is used to 

tune the light bulb emission wavelength.  In the current commercial LED technology, 

there are two ways to achieve white light emission.  A commercial LED standard such as 

InGaN can be used as the semiconductor, where the emission is in the blue region.  This 

blue light can then excite red and/or yellow phosphor coatings to achieve white light, or 

three different LEDs, a green, red, and blue, can be used to provide white light 

emission.1.1, 1.7 When searching for a new phosphor coating material, the goal would is to 

synthesize a material that, when excited by the blue emission from the semiconductor, 

tunes the emission to a warmer white light while still maintaining good color rendering.  

It is also important to make sure that this research focuses on using earth abundant 

materials.   

 Due to all of these considerations, this thesis research focused on the synthesis of 

new complex luminescent oxides.  Complex luminescent oxides are materials with 
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oxygen as the primary anion component with at least one luminescent cation, one 

framework cation, and potentially, an alkali or alkaline earth metal cation.  In the 

research presented here, sodium, potassium, cesium, and calcium are the alkali or alkaline 

earth metals, rare earths (the lanthanide row, yttrium, and scandium) are the luminescent 

center(s), silicon, germanium, or tungsten are the framework, and primarily oxygen, with 

the addition of some fluorine or hydroxide, are the anions. The framework components, 

especially silicon, are earth abundant and the rare earths provide strong luminescence that 

requires only small quantities to be included in the structure, in these cases, via doping 

onto a rare earth site.  Additionally, the oxide frameworks are inert host lattices with 

good thermal stability compared to sulfides1.8, 1.9 that have wide band gaps, making them 

better phosphors.1.6  Therefore, these complex luminescent oxides are well suited to make 

strides in the improvement of current LED technology.   

 Silicon is one of the most abundant elements, by mass, on earth.  Silicon is 

present in many naturally occurring minerals and usually occurs as a silicate, a family of 

materials that are based on the SiO4
4- tetrahedral unit.  Silicates create a very rigid and 

versatile framework that tends to easily incorporate other elements, such as rare earths 

and alkali or alkaline earth metal cations.1.8, 1.10, 1.11  In addition to silicon, germanium,1.10 

another tetragen, and tungsten,1.1 also comprise rigid frameworks, where rare earth 

elements can be incorporated.  All three of these elements also tend to be colorless when 

in oxide frameworks, thus not interfering with luminescence in the visible range of the 

electromagnetic spectrum. 

 When considering silicates, it is important to look at the various framework 

possibilities.  As previously mentioned, SiO4
4- is the primary building block in silicate 
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structures.  The primary silicate units include nesosilicates (isolated SiO4
4-), sorosilicates 

(Si2O7
-6), cyclosilicates (rings including Si6O18

-12, Si3O9
-6, Si4O12

-8, and Si5O15
-10), 

inosilicates (single and double chain silicates such as Si4O13
-10), phyllosilicates (sheet 

silicates), and tectosilicates (framework silicates).  With so many different arrangements 

of the primary silicate building block, it is easy to understand why there are so many 

different silicate materials known.1.12, 1.13 

 With a tetragen such as silicon or germanium as the primary framework unit of 

the complex oxide, the next consideration is the luminescent material.  In LED 

technology, rare earth elements are still heavily relied on to provide the luminescent 

component.1.8   

Rare earth and lanthanide elements were discovered relatively recently, with the 

first rare earth, yttrium, discovered in 1787, 15 others discovered between 1803 and 

1907, and finally, radioactive promethium was discovered in 1947.1.14  Rare earths were 

found to exhibit strong luminescence that is scarcely affected by the environment in 

which the rare earth is found.  The 4f electrons in rare earth elements are shielded by the 

5s and 5p orbitals, leading to very little interaction with the framework that the rare earth 

resides in.  Within the 4f orbital there are electron-electron repulsions, known as the 

Coulombic interaction, that cause large term, energy state, separations, on the order of 

104 cm-1.  These term separations lead to a split of several J-levels via spin-orbital 

coupling, which is also large due to the heavy nuclei of a rare earth ion, on the order of 

103 cm-1.   If the rare earth element is in a coordinating environment, such as a crystalline 

lattice, the J-levels can be split even further by the electric field, or crystal field, of the 

lattice.  This effect is known as crystal field splitting and is rather small in rare earth ions, 
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on the order of 102 cm-1.  Because the crystal field splitting in rare earths is small, and 

because the filled 5s and 5p orbitals shield the 4f electrons, the luminescent properties of 

rare earth elements are rather consistent and only slightly affected by their coordination 

environment in the framework.1.15   

 In addition to activated luminescence, when the rare earth center exhibits 

luminescence due to its valence f electrons, sometimes rare earths such as yttrium and 

lutetium, which have no valence f electrons when present as trivalent Y3+ and Lu3+, 

exhibit intrinsic luminescence.1.16, 1.17  In many cases the intrinsic luminescence appears 

to come from the yttrium environment, with examples such as Y2SiO5,
1.16 YF3,

1.18 and 

Y2SiO5
1.19 previously reported in the literature. 

 Additionally, when studying luminescent compounds where the luminescence 

results from heavy rare earth elements, scintillation abilities should be tested.  Scintillator 

materials are used to detect ionizing radiation.1.20-1.22  In order to have a scintillator 

material, the compound must luminesce under usual UV excitation and contain heavy 

elements.  Rare earth elements such as Eu3+, Gd3+, and Tb3+ are heavy and luminescent so 

when they are in structures, the potential of scintillation increases.1.23, 1.24  Additionally, 

when a heavier element like potassium, or a very heavy element such as cesium is also in 

the structure, the potential for scintillation increases again.  Finally, trivalent rare earth, 

specifically Ce3+, doped silicates currently dominate the scintillator market because they 

have high chemical stability, high light yields, and fast decay times.1.23 

Due to the framework and luminescent ions, rare earth silicates are strong 

candidates for new phosphor coating materials for LEDs and potential scintillator 

materials.  Despite being extensively studied, new rare earth silicate phases are 
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continually being discovered.  In this thesis research, the focus has been on a relatively 

unexplored phase space where exploratory flux crystal growth was carried out primarily 

using alkali halide eutectic fluxes.1.25  Throughout this research, numerous new phases 

were synthesized.  The choice of the alkali metal in the flux, in addition to the reaction 

conditions, appears to be very important in influencing the specific products formed. 

When sodium halides were chosen as the flux, the primary phases synthesized 

were the apatite, A10-xLnx(SiO4)6O2-yFy (A = Na, K, Ca; Ln = Pr, Nd, Sm, Eu, Gd), family 

1.26-1.39 and the A5Ln4X[TO4]4 (A = Na, K; Ln = Pr, Nd, Sm – Yb, Y) family.1.40-1.43  

Chapters 2 and 3 present the apatite structures that were synthesized.  In the apatite 

research the changes in the luminescence due to the presence or absence of fluorine 

and/or the alkali metal was explored.  Chapters 3 – 6 present the A5Ln4X[TO4]4 

compositions that were synthesized.  For A = Na and T = Si, a comparison between X = 

F and X = OH is discussed, where second harmonic generation, luminescence, 

fluorescence quantum yield, and magnetism were all collected for the comparison.  It was 

observed that having X = F improves all properties tested.  It was also determined that 

when using sodium halides as the flux and using larger and smaller lanthanide elements, 

La, Yb, and Sc different structures were formed.  Chapter 7 discusses the NaLnSiO4
1.44-

1.46 and the Na2RESiO4(OH)1.47 structures that formed for La, Yb, and Sc under 

conditions that yielded the A5Ln4X[TO4]4 (A = Na, K; Ln = Pr, Nd, Sm – Yb, Y) family 

for the other lanthanides.  The magnetism properties of these structures are discussed. 

When potassium halides were chosen as the flux components, compositions 

differed from those formed when sodium was in the flux.  A very stable phase is the 

K3LnSi2O7 phase, which has been extensively studied in the literature.1.48-1.52  Chapters 8 
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and 9 present additional aspects of the series of K3LnSi2O7 and expand into some 

Na3LnSi2O7 compositions.  In this family, polymorphism is common and multiple 

polymorphs are reported.  Additionally, it was found that K3YSi2O7 exhibits intrinsic 

luminescence.  It was found that the luminescence can be tuned to white luminescence 

through the addition of a red component, Eu3+, and a yellow component, Dy3+.1.1, 1.53-1.55  

With yttrium, an earth abundant element together with small levels of other rare earths, 

occupying the rare earth crystallographic site, promising luminescence is observed for 

this composition making it potentially suitable as a phosphor coating.  In addition to the 

K3LnSi2O7 phase, a second phase sometimes crystallized in the reactions.  Chapter 10 

presents the K5RE2FSi4O13 (Sc, Y) phase.1.56  

In addition to sodium and potassium flux reactions, recent research has expanded 

into using cesium halide fluxes.  Chapter 11 presents Cs3LnSi4O10F2, which is a new 

structure type.  This is the first example of a composition with Si3O9 units connected 

through a fourth silicon tetrahedron.  Specifically, three Si3O9 units are connected 

through the fourth silicon tetrahedron.  In addition to being interesting as a new structure 

type and an uncommon example of cesium-rare-earth-silicate compositions, the Tb 

analogue exhibits intense luminescence and very strong scintillation on the laboratory X-

ray diffractometer.  Further research is ongoing. 

Overall, this research has been driven by the goal to find new materials that can 

be used as phosphor coatings in solid-state lighting.  Throughout this research, it has been 

observed that rare earth silicates exhibit strong luminescence that can be tuned and the 

presence of fluorine in a composition of complex luminescent oxides increases the 

brightness of the luminescence.1.57  Future studies are ongoing to determine the strength 
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of potential scintillator materials, and how the presence of fluorine in the rare earth 

polyhedra and/or the presence of a heavier element such as cesium affect the scintillation 

behavior in addition to the overarching goal to continue to find a new phosphor coating 

for LED technology that can overcome the current limitations. 

   

  

  



www.manaraa.com

10 

 

References 

 

1.1 Liu, Y.; Liu, G.; Wang, J.; Dong, X.; Yu, W. Inorg. Chem. 2014, 53, 11457-11466. 

1.2 Xia, Y.; Liu, Y.-G.; Huang, Z.; Fang, M.; Molokeev, M. S.; Mei, L. F. J. Mater. 

Chem. C 2016, 4, 4675-4683. 

1.3 He, G.; Tang, J. IEEE Photonics Technol. Lett. 2014, 26, 1450-1453. 

1.4 Lin, Z.; Lin, H.; Xu, J.; Huang, F.; Chen, H.; Wang, B.; Wang, Y. J. Alloys Compd. 

2015, 649, 661-665. 

1.5 Rea, M. S.; Freyssinier-Nova, J. P. Color Res. Appl. 2008, 33, 192-202. 

1.6 McKittrick, J.; Shea-Rohwer, L. E. J. Am. Ceram. Soc. 2014, 97, 1327-1352. 

1.7 Xu, C.; Poduska, K. M. J. Mater. Sci: Mater. Electon 2015, 26, 4565-4570. 

1.8 Zhang, Y.; Li, G.; Geng, D.; Shang, M.; Peng, C.; Lin, J. Inorg. Chem. 2012, 51, 

11655-11664. 

1.9 Brgoch, J.; Borg, C. K. H.; Denault, K. A.; Mikhailovsky, A.; DenBaars, S. P.; 

Seshadri, R. Inorg. Chem. 2013, 52, 8010-8016. 

1.10 Dawson, C. J.; Sanchez-Smith, R.; Rez, P.; O’Keeffe, M.; Treacy, M. M. J. Chem. 

Mater. 2014, 26, 1523-1527. 

1.11 Yang, P.; Yu, X.; Yu, H.; Jiang, T.; Zhou, D.; Qiu, J. J. Rare Earths 2012, 30, 

1208-1212. 

1.12 Ananias, D.; Kostova, M.; Almeida Paz, F. A.; Ferreira, A.; Carlos, L. D.; 

Klinowski, J.; Rocha, J. J. Am. Chem. Soc. 2004, 126, 10410-10417. 

1.13 Wanklyn, B. M.; Wondre, F. R.; Ansell, G. B.; Davison, W. J. Mater. Sci. 1974, 9, 

2007-2014. 

1.14 Eliseeva, S. V.; Bünzli, J.-C. G. New J. Chem. 2011, 35, 1165-1176. 

1.15 Werts, M. H. V. Sci. Prog. 2005, 88, 101-131. 

1.16 Ivanov, V. Y.; Shlygin, E. S.; Pustovarov, V. A.; Mazurenko, V. V.; Shul’gin, B. V. 

Phys. Solid State 2008, 50, 1692-1698. 

1.17 Muresan, L. E.; Popovici, E. J.; Perhaita, I.; Indrea, E.; Oro, J.; Casan Pastor, N. 

Luminescence 2016, 31, 929-936. 

1.18 Pankratov, V.; Kirm, M.; von Seggern, H. J. Lumin. 2005, 113, 143-150. 

1.19 Zorenko, Y.; Zorenko, T.; Voznyak, T.; Sidletskiy, O. J. Lumin. 2013, 137, 204-

207. 

1.20 Horiai, T.; Kurosawa, S.; Murakami, R.; Pejchal, J.; Yamaji, A.; Shoji, Y.; Chani, 

V. I.; Ohashi, Y.; Kamada, K.; Yokota, Y.; Yoshikawa, A. Opt. Mater. (Amsterdam, 

Neth.) 2016, Ahead of Print. 

1.21 Martins, A. F.; Carreira, J. F. C.; Rodrigues, J.; Ben Sedrine, N.; Castro, I. F. C.; 

Correia, P. M. M.; Veloso, J. F. C. A.; Rino, L.; Monteiro, T. Spectrochim. Acta, 

Part A 2016, Ahead of Print. 

1.22 Yokota, Y.; Kurosawa, S.; Ohasi, Y.; Kamada, K.; Yoshikawa, A. J. Cryst. Growth 

2016, Ahead of Print. 

1.23 Yanagida, T. Opt. Mater. 2013, 35, 1987-1992. 

1.24 Yamaguchi, H.; Kamada, K.; Kurosawa, S.; Pejchal, J.; Shoji, Y.; Yokota, Y.; 

Ohashi, Y.; Yoshikawa, A. Opt. Mater 2016, In Press.  

1.25 Bugaris, D. E.; zur Loye, H.-C. Angew. Chem. Int. Ed. 2012, 51, 3780-3811. 

1.26 Chiu, Y.-C. L., W.-R.; Yeh, Y.-T.; Jang, S.-M.; and Chen, T.-M. J. Chem. Chem. 

Eng. 2011, 5, 841-846. 



www.manaraa.com

11 

 

1.27 Dong, Z.; White, T. J.; Wei, B.; Laursen, K. J. Am. Ceram. Soc. 2002, 85, 2515-

2522. 

1.28 Felsche, J. J. Solid State Chem. 1972, 5, 266-275. 

1.29 Hopkins, R. H.; Melamed, N. T.; Henningsen, T.; Roland, G. W. J. Cryst. Growth 

1971, 10, 218-222. 

1.30 Leu, L.-C.; Thomas, S.; Sebastian, M. T.; Zdzieszynski, S.; Misture, S.; Ubic, R. J. 

Am. Ceram. Soc. 2011, 94, 2625-2632. 

1.31 Maisonneuve, V.; Leduc, E.; Bohnke, O.; Leblanc, M. Chem. Mater. 2004, 16, 

5220-5222. 

1.32 Masubuchi, Y.; Higuchi, M.; Takeda, T.; Kikkawa, S. Solid State Ionics 2006, 177, 

263-268. 

1.33 Nakayama, S.; Highchi, M. J. Mater. Sci. Lett. 2001, 20, 913-915. 

1.34 Nötzold, D.; Wulff, H. Phys. Stat. Sol. (B) 1998, 207, 271-282. 

1.35 Sansom, J. E. H.; Richlings, D.; Slater, P. R. Solid State Ionics 2001, 139, 205-210. 

1.36 Schroeder, L. W.; Mathew, M. J. Solid State Chem. 1978, 26, 383-387. 

1.37 Shen, Y.; Tok, A.; Dong, Z. J. Am. Ceram. Soc. 2010, 93, 1176-1182. 

1.38 Takahashi, M.; Uematsu, K.; Ye, Z.-G.; Sato, M. J. Solid State Chem. 1998, 139, 

304-309. 

1.39 Toumi, M.; Smiri-Dogguy, L.; Bulou, A. Ann. Chim. Sci. Mat. 2002, 27, 17-26. 

1.40 Hughey, K.; Yeon, J.; zur Loye, H.-C. J. Chem. Crystallogr. 2014, 44, 376-379. 

1.41 Malinovskii, Y. A. Dokl. Akad. Nauk SSSR 1984, 274, 75-78. 

1.42 Merinov, B. V.; Maksimov, B. A.; Ilyukhin, V. V.; Belov, N. V. Dokl. Akad. Nauk 

SSSR 1980, 255, 348-351. 

1.43 Schafer, M. C.; Schleid, T. Z. Anorg. Allg. Chem. 2010, 636, 2069. 

1.44 Chichagov, A. V.; Ilyukhin, V. V.; Belov, N. V. Dokl. Akad. Nauk SSSR 1967, 177, 

574. 

1.45 Chichagov, A. V.; Belov, N. V. Geochem. Int. 1968, 5, 858. 

1.46 Emirdag-Eanes, M.; Krawiec, M.; Kolis, J. W. J. Chem. Crystallogr. 2001, 31, 281-

285. 

1.47 Chiragov, M. I.; Mamedov, K. S. Uch. zap. Azerb. un-t. Ser. geol.-geogr. n. 1974, 

4, 3-6. 

1.48 Bondar, I. A.; Tenisheva, T. F.; Toropov, N. A.; Shepelev, Y. F. Dokl. Akad. Nauk 

SSSR 1965, 160, 1069-1071. 

1.49 Hwang, M. S.; Hong, H. Y.-P. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 

1987, 43, 1241-1243. 

1.50 Napper, J. D.; Layland, R. C.; Smith, M. D.; zur Loye, H.-C. J. Chem. Crystallogr. 

2004, 34, 347-351. 

1.51 Tamazyan, R. A.; Malinovskii, Y. A.; Sirota, M. I.; Simonov, V. I. Kristallografiya 

1988, 33, 1128-1133. 

1.52 Vidican, I.; Smith, M. D.; zur Loye, H.-C. J. Solid State Chem. 2003, 170, 203-210. 

1.53 Bharat, L. K.; Jeon, Y. I.; Yu, J. S. Ceram. Int. 2016, 42, 5677-5685. 

1.54 Leng, Z.; Li, L.; Liu, Y.; Zhang, N.; Gan, S. J. Lumin. 2016, 173, 171-176. 

1.55 Zhai, Y.; Wang, M.; Zhao, Q.; Yu, J.; Li, X. J. Lumin. 2016, 172, 161-167. 

1.56 Chiang, P.-Y.; Lin, T.-W.; Dai, J.-H.; Chang, B. C.; Lii, K.-H. Inorg. Chem. 2007, 

46, 3619-3622. 

1.57 Kunkel, N.; Meijerink, A.; Kohlmann, H. Inorg. Chem. 2014, 53, 4800-4802. 



www.manaraa.com

 
 

12 

Chapter 2 

Photoluminescent and Magnetic Properties of Lanthanide Containing Apatites:  NaxLn10-

x(SiO4)6O2-yFy, CaxLn10-x(SiO4)6O2-yFy (Ln = Eu, Gd, and Sm), Gd9.34(SiO4)6O2, and 

K1.32Pr8.68(SiO4)6O1.36F0.64* 

 

 

 

 

 

 

 

*Latshaw, A. M., Hughey, K. D., Smith, M. D., Yeon, J., zur Loye, H.-C. Inorg. Chem., 

2015, 54 (3), 876-884.  
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Introduction 

 Apatite structures have long been studied for many potential applications ranging 

from electrolytes for solid fuel cells2.1 to solid state laser hosts2.2 to phosphors used in 

luminescent devices.2.3  More recently, the potential applications of materials belonging 

to this extensive structural family in solid state lighting has further increased interest in 

exploring the apatite structure, and in preparing new rare earth containing compositions 

crystallizing in the apatite structure. 

 The apatite structure type is named after a class of minerals that have the 

composition Ca5(PO4)3X, where X = F, Cl, or OH.  The nomenclature within the apatite 

mineral class is extensive and overlapping.  For this reason, we will apply the basic 

nomenclature when discussing apatite structures, and use the X component to distinguish 

the apatites; specifically, we will refer to a fluoroapatite when X = F, a chlorapatite when 

X = Cl, a hydroxyapatite when X = OH, and an oxyapatite when X =O.2.4  

Within the extensive family of known apatites, many are reported using the 

composition A10(BO4)6X2, instead of A5(BO4)3X.  This doubled composition is helpful 

when sites A and X are occupied by two different cations or anions, as reported herein.  In 

general, “apatite” is used to describe a material with the composition A10(BO4)6X2, where 

A is a large cation, such as an alkali, alkaline-earth, or lanthanide metal cation, or a mix 

of two of these, B is a smaller cation, such as arsenic (Sr10(AsO4)6Cl2),
2.5 boron, 

chromium (Sr10(CrO4)6F2),
2.6 germanium (NaLa9(GeO4)6O2),

2.7 phosphorous, silicon 

(Na0.5Nd4.5(SiO4)3O),2.8 sulfur, or vanadium (Ba5(VO4)3OH),2.9 and X is an anion, such as 

fluorine, chlorine, or oxygen, or a combination of two of these.2.10 For the compositions 
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reported herein it is best to think of the apatite composition as AA’(BO4)6XY, where A = 

Ca, K, or Na, A’ = Ln (Eu, Gd, or Sm), B = Si, and X and Y = O or F.   

The silicate apatite structure can act as a sensitizer by absorbing UV radiation and 

transmitting it to an activator, making it a good host structure for luminescence, as noted 

in the review by Waychunas in 2002.2.11  It was also noted in the review that despite this 

ability, the silicate apatite structure has rarely been studied for its luminescent properties.  

In this paper, we are reporting on our efforts to synthesize new rare earth 

containing silica based apatite materials and on our investigation of the luminescent and 

magnetic properties observed in silicate apatites. Herein, we present the crystal structures 

of seven new apatite oxides and oxyfluorides, along with the photoluminescence and 

magnetic properties of NaEu9(SiO4)6O2, Na1.5Eu8.5(SiO4)6OF, Eu9.34(SiO4)6O2, and 

Gd9.34(SiO4)6O2. The luminescence study indicates that lanthanide containing silicate 

apatites display luminescent properties that are essentially not affected by other cations or 

anions, making them good candidates in the search for new optical materials.  

Experimental Section 

Reagents 

Eu2O3 (99.9 %), Gd2O3 (99.9 %), Sm2O3 (99.99 %), Pr2O3 reduced from Pr6O11 

(99.9 %), LiF (98+ %), CaCO3 (99.95 %), Na2MoO42H2O (99.5 – 103.0 %), KF (99 % 

min.), and NaF (99 % min.) were purchased from Alfa Aesar.  Na2CO3 was purchased 

from Fisher Scientific, KCl (99.42 %) from Mallinckrodt, and SiO2 (99.99 %) was 

purchased from Aldrich as fused pieces and ground to a powder in a ball mill.   
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Crystal Growth 

The conditions described for the crystal growth of the various compositions are 

those found empirically to give the best yield and crystal quality.  A compilation of the 

flux crystal growth reactions is given in Table 2.1. 

Single crystals of Na1.5Eu8.5(SiO4)6OF, NaEu9(SiO4)6O2, and 

Na1.62Gd8.36(SiO4)6O0.72F1.28 were grown out of a sodium fluoride flux.  Crystals of 

Na1.5Eu8.5(SiO4)6OF were prepared by loading a 2:2:4 mmol ratio of Eu2O3:Na2CO3:SiO2 

into a platinum crucible.  5 grams of NaF flux were placed on top of the reactants, and a 

platinum lid was loosely fitted onto the crucible.  The crucible was placed into a 

programmable furnace that was heated to 1150 °C over 1.5 h, allowed to dwell there for 

12 h, and then slow cooled at a rate of 6 °C per hour to 1000 °C, after which the furnace 

was shut off.  The flux was washed away using water, aided by sonication, and then the 

crystals were isolated by filtration. 

NaEu9(SiO4)6O2 crystals were prepared by loading a 2:2:4 mmol ratio of 

Eu2O3:Na2CO3:SiO2 into a silver crucible.  3.37g:3.11g of NaF:Na2MoO4 flux were 

placed on top of the reactants, and a silver lid was loosely fitted onto the crucible.  The 

crucible was placed into a programmable furnace that was heated to 750 °C over 1.5 h, 

allowed to dwell there for 12 h, and then slow cooled at a rate of 6 °C per hour to 550 °C, 

after which the furnace was shut off.  The flux was washed away using water, aided by 

sonication, and then the crystals were isolated by filtration. 

Na1.62Gd8.36(SiO4)6(O0.72F1.28) crystals were prepared by loading a 1:2 mmol ratio 

of Gd2O3: SiO2 into a silver crucible.  0.2519g:4.95g of NaF:Na2MoO4 flux were placed 

on top of the reactants, and a silver lid was loosely fitted onto the crucible.  The crucible 



www.manaraa.com

 
 

16 

was placed into a programmable furnace that was heated to 750 °C over 1.5 h, allowed to 

dwell there for 12 h, and then slow cooled at a rate of 6 °C per hour to 550 °C, after 

which the furnace was shut off.  The flux was washed away using water, aided by 

sonication, and then the crystals were isolated by filtration. 

Crystals of Gd9.34(SiO4)6O2 were prepared by loading a 1:2 mmol ratio of 

Gd2O3:SiO2 into a silver crucible.  1.86g:2.97g of KF:KCl flux were placed on top of the 

reactants, and a silver lid was loosely fitted onto the crucible.  The crucible was placed 

into a programmable furnace that was heated to 750 °C over 1.5 h, allowed to dwell there 

for 10 days, and then slow cooled at a rate of 6 °C per hour to 550 °C, after which the 

furnace was shut off.  The flux was washed away using water, aided by sonication, and 

then the crystals were isolated by filtration. 

Crystals of Ca2.6Eu7.4(SiO4)6O1.4F0.6 and Ca4.02Sm5.98(SiO4)6F2 were prepared by 

loading a 2:1:1 mmol ratio of CaCO3:SiO2:Ln2O3 into a silver crucible.  1.85g:2.97g of 

KF:KCl flux were placed on top of the reactants, and a silver lid was loosely fitted onto 

the crucible.  The crucible was placed into a programmable furnace that was heated to 

750 °C over 1.5 h, allowed to dwell there for 24 h, and then slow cooled at a rate of 6 °C 

per hour to 550 °C, after which the furnace was shut off.  The flux was washed away 

using water, aided by sonication, and then the crystals were isolated by filtration. 

Crystals of K1.32Pr8.68(SiO4)6O1.36F0.64 were prepared by loading a 2:4 mmol ratio 

of Pr2O3:SiO2 into a copper tube that was welded at one end.  5 g of KF was then loaded 

on top of the reactants, and the top of the tube was crimped shut.  The reaction was 

loaded into a flow-through furnace, which contained an outer quartz tube with N2 gas 

flowing through it, an inner copper tube to prevent any flux leaks from shattering the 
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outer quartz tube, and the reaction tube.  The furnace was then programmed to heat to 

1000 °C over 1.5 h, and held there for 24 h before slow cooling to 800 °C at a rate of 6 

°C per hour and then shutting off the furnace.  The flux was washed away using water, 

aided by sonication, and then the crystals were isolated by filtration. 

 Polycrystalline samples of NaEu9(SiO4)6O2, Gd9.34(SiO4)6O2, and Eu9.34(SiO4)6O2 

were also synthesized via a solid state route.  For NaEu9(SiO4)6O2, a stoichiometric ratio 

of Na2CO3 (0.125 mmol), SiO2 (1.5 mmol), and Eu2O3 (1.125 mmol) was ground for 30 

min and then transferred to an alumina crucible.  The reaction was then heated to 900 °C 

with multiple heating/grinding cycles before the temperature was increased to 950 °C 

with multiple heating/grinding cycles.  For Gd9.34(SiO4)6O2 and Eu9.34(SiO4)6O2, 

stoichiometric ratios of Gd2O3 or Eu2O3 (1.1675 mmol), and SiO2 (1.5 mmol) were 

ground for 30 min and then transferred to an alumina crucible.  The reactions were then 

heated to 900 °C with multiple heating/grinding cycles before the temperature was 

increased to 950 °C, with regrinding occurring after 48 h of heating.  No change took 

place between 900 °C and 950 °C; therefore, the temperature was increased to 1000 °C 

with multiple heating/grinding cycles before the temperature was increased to 1050 °C 

and reground after 48 h, followed by a final heat treatment at 1100 °C, with regrinding 

after 100 h. 

 A polycrystalline sample of Na1.5Eu8.5(SiO4)6OF was also synthesized via a solid 

state route.  A stoichiometric ratio of Eu2O3 (2.125 mmol), Na2SiO3 (0.125 mmol), SiO2 

(2.875 mmol), and NaF (0.5 mmol) was ground for 30 min and then pressed into a pellet.  

The pellet was then loaded into a small copper tube that was crimped at both ends to 

avoid losing fluoride.  The copper tube was loaded into a flow-through furnace purged 
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with N2 gas.  The reaction was heated to 850 °C, with regrinding occurring after 100 h of 

heating, before increasing the temperature to 900 °C, with multiple heating/grinding 

cycles until the pattern stopped changing.   

Single Crystal X-ray Diffraction 

Single crystal X-ray diffraction data were collected on all titled compounds. X-ray 

intensity data from a colorless needle crystal of NaEu9(SiO4)6O2 and colorless hexagonal 

rod crystals of Na1.5Eu8.5(SiO4)6OF, Gd9.34(SiO4)6O2, Na1.62Gd8.36(SiO4)6O0.72F1.28, 

Ca2.6Eu7.4(SiO4)6O1.4F0.6, Ca4.02Sm5.98(SiO4)6F2, and K1.32Pr8.68(SiO4)6O1.36F0.64  were 

collected using a Bruker SMART APEX diffractometer (Mo K radiation,  = 0.71073 

Å).2.12 The data collection covered 100 % of reciprocal space to 2θmax = 65.2 °, 56.6 °, 

70.6 °, 70.1 °, 71.1 °, 70.1 °, and 56.58 °, respectively, with Rint = 0.036, 0.025, 0.036, 

0.040, 0.040, 0.052, and 0.031 after absorption correction.  The raw area detector data 

frames were reduced and corrected for absorption effects using the SAINT+ and 

SADABS programs.2.12 Final unit cell parameters were determined by least-squares 

refinement of reflections from the data set.  The initial structural model was obtained by 

direct methods using SHELXS.2.13 Subsequent difference Fourier calculations and full-

matrix least-squares refinement against F2 were performed with SHELXL-2013/42, using 

the ShelXle interface.2.14  

 The compounds crystallize in the hexagonal space group P63/m, as determined by 

the pattern of systematic absences in the intensity data, and by the structure solution.  

These compounds adopt the fluoroapatite (Ca5(PO4)3F) structure type.  The apatite 

structure contains two unique lanthanide sites, where Ln(1) is located on a three-fold axis 

(Wyckoff symbol 4f, site symmetry 3), while Ln(2) is located on a mirror plane (site 6h, 
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site symmetry m).  In NaEu9(SiO4)6O2, sodium mixes on the Ln(1) site, while in 

Na1.5Eu8.5(SiO4)6OF, Gd8.36Na1.62(SiO4)6O0.72F1.28, Ca2.6Eu7.4(SiO4)6O1.4F0.6, 

Ca4.02Sm5.98(SiO4)6F2, and K1.32Pr8.68(SiO4)6O1.36F0.64, sodium or potassium mixes on both 

the Ln(1) and Ln(2) sites.  For Gd9.34(SiO4)6O2, there is a partial vacancy on the Ln(1) site 

that matches what has been previously reported for the Gd9.34(SiO4)6O2 compound.2.15 

Atoms Si(1), O(1), and O(2) are located on mirror planes (site 6h, site symmetry m).  

Oxygen O(3) is located on a general position (site 12i), and oxygen O(4) is located on 

site 2a with -6 site symmetry. Site 2a is occupied either by O(4), in NaEu9(SiO4)6O2 and 

Gd9.34(SiO4)6O2, a mixing of O(4) and F(1), in Na1.5Eu8.5(SiO4)6OF, 

Gd8.36Na1.62(SiO4)6O0.72F1.28, Ca2.6Eu7.4(SiO4)6O1.4F0.6, and K1.32Pr8.68(SiO4)6O1.36F0.64, or 

only F(1), in Ca4.02Sm5.98(SiO4)6F2.  All atoms were refined with anisotropic displacement 

parameters. Final atomic coordinates were standardized with Structure Tidy.2.16 2.17 2.18  

Further details of the crystal structure investigation can be obtained from the 

Fachinformationszentrum Karlsruhe (e-mail: crystdata@fiz-karlsruhe.de) using the 

depository numbers 428482 for Na1.64Gd8.36(SiO4)6O0.72F1.28, 428483 for 

K1.32Pr8.68(SiO4)6O1.36F0.64, 428484 for Na1.5Eu8.5(SiO4)6OF, 428485 for NaEu9(SiO4)6O2, 

428486 for Ca2.6Eu7.4(SiO4)6O1.4F0.6, 428487 for Ca4.02Sm5.98(SiO4)6F2 and 428488 for 

Gd9.34(SiO4)6O2.  

Powder X-ray Diffraction 

The powder X-ray diffraction patterns for the polycrystalline samples from the 

solid state reactions NaEu9(SiO4)6O2, Na1.5Eu8.5(SiO4)6OF, Gd9.34(SiO4)6O2, and 

Eu9.34(SiO4)6O2 were collected using a Rigaku Dmax/2100 powder diffractometer using 

Cu Kα radiation.  Data for NaEu9(SiO4)6O2, Na1.5Eu8.5(SiO4)6OF, and Gd9.34(SiO4)6O2 
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were collected using a step scan covering the 2-theta range of 5 – 65 ° in steps of 0.02 °.  

Data for the Eu9.34(SiO4)6O2 were collected using a step scan covering the 2-theta range 

of 5 – 120 ° in steps of 0.04 °.  PXRD patterns were collected on the compounds grown 

by flux growth; Na1.64Gd8.36(SiO4)6O0.72F1.28, Gd9.34(SiO4)6O2, Ca2.6Eu7.4(SiO4)6O1.4F0.6, 

Ca4.02Sm5.98(SiO4)6F2,  and K1.32Pr8.68(SiO4)6O1.36F0.64, all of which contain small amounts 

of unreacted, water insoluble SiO2, Gd2O3 (about 5 %),  CaF2 (about 10-16 %), as well as, 

in some cases, secondary phases like K3GdSi2O7 (about 40 %), Eu(AlO3) (about 33 %), 

and another new praseodymium compound in the powder samples that cannot be 

removed by washing.  Powder samples that included lanthanide containing secondary 

phases were not measured for luminescent properties because the impurities would affect 

the luminescence. 

X-ray Photoelectron Spectroscopy 

Survey and detailed scans of the polycrystalline sample of Na1.5Eu8.5(SiO4)6OF 

were performed using X-ray Photoelectron Spectroscopy (XPS) on a Kratos AXIS Ultra 

DLD XPS system equipped with a monochromatic Al Kα. The Al Kα source had an 

operational level of 15 keV and 120 W, and the analyzer lens mode was hybrid.  For the 

survey scan, the pass energy was fixed at 160 eV, the scan range was from 1350 eV to -

0.8 eV, and the scan step was 400 meV with a dwell time of 500 ms. For the high-

resolution XPS spectra acquisition, the pass energy was fixed at 40 eV; the scan range 

was chosen based on the interested elements, and the scan step was 60 meV with a dwell 

time of 2500 ms.   
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Luminescence 

 Emission and excitation spectra were collected on powders of NaEu9(SiO4)6O2, 

Gd9.34(SiO4)6O2, Eu9.34(SiO4)6O2, and Na1.5Eu8.5(SiO4)6OF at room temperature using a 

Perkin Elmer LS 55 fluorescence spectrometer.  Excitation and emission scans were 

performed in the 225 – 500 and 550 – 900 nm ranges, respectively.  Luminescence data 

of the other compounds were not collected due to the presence of lanthanide containing 

secondary phases that would have affected the data collection. 

Magnetic Property Measurements 

 The DC magnetizations of NaEu9(SiO4)6O2, Gd9.34(SiO4)6O2, Eu9.34(SiO4)6O2, and 

Na1.5Eu8.5(SiO4)6OF were measured as a function of temperature using a Quantum 

Design Magnetic Property Measurement System (QD-MPMS3 SQUID VSM).  These 

compounds were placed in gel capsules.  The samples were then cooled to 2 K in zero-

field cooled (zfc) conditions.  Data was collected from 2 to 300 K with an applied 

magnetic field of 1000 Oe.  Corrections for the radial offset and sample shape were 

applied to the magnetism with a fitting routine that involved data collected at 30 K under 

both DC and VSM modes.2.19  Magnetic properties of the other compounds were not 

collected due to the presence of lanthanide containing secondary phases that would have 

affected the sample magnetization. 

Results and Discussion 

Powder X-ray Diffraction 

 The calculated and experimental PXRD patterns for the polycrystalline solid state 

reactions NaEu9(SiO4)6O2, Na1.5Eu8.5(SiO4)6OF, and Gd9.34(SiO4)6O2 are in excellent 
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agreement, as seen in Figure 2.1. Eu9.34(SiO4)6O2, which has been published previously 

as a polycrystalline powder,2.20 was compared to Gd9.34(SiO4)6O2 (Figure 2.2).  It was 

determined that there was a very small amount of Eu2O3 in the Eu9.34(SiO4)6O2 

polycrystalline powder.  The Eu2O3 can only been seen when zooming in on the powder 

pattern. 

Crystal Structure 

Alkali fluoride melts have been identified as good fluxes for the crystal growth of 

oxides,2.21 and were used to grow crystals of the title compounds.  In order to lower the 

temperatures of the fluxes to carry out the reactions in silver instead of platinum 

crucibles, eutectic compositions were used.  The fluxes used include NaF (m.p. 993°), 

NaF(34%)/NaCl(66%) (m.p. 679°), NaF(20%)/Na2MoO4(80%) (m.p. 614°C), and 

KF(45%)/KCl(55%) (m.p. 606°C).  Crystal growth reactions carried out in the NaF and 

NaF containing eutectic fluxes consistently resulted in sodium incorporation into the 

reaction products, while reactions carried out in KF based eutectics did not result in the 

incorporation of potassium into the crystals.  Only when KF was used neat, did the 

potassium incorporate. All compounds crystallize in the hexagonal space group P63/m.  

The crystallographic data are compiled in Table 2.2.   

Many of the known lanthanide silicate oxyapatites crystallize in the space group 

P63/m, as is the case for the title compounds; however, apatites are known to also 

crystallize in five other principle space groups including P63, P-3, P-6, P21/m and P21.
2.3, 

2.10, 2.22-2.31 All apatite structures contain columns consisting of distorted, face-sharing 

trigonal prisms as shown in Figure 2.3.  In the case of apatites taking on the P63/m space 

group, the Ln(1) site occupies the cation sites in these columns.  As the space group 
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changes to, for example, P21/m or P21, there are either multiple cations occupying these 

columns, or the distortions of the columns, called the metaprism twist angles, grow larger 

or less uniform.  In the P63/m space group, the metaprism twist angles must be uniform, 

while for space groups P21/m and P21, there can be multiple metaprism angles for each 

trigonal prism.2.22    

As observed previously in the literature, in compounds with the composition 

AxLn10-x(SiO4)6O2, where A is an alkali or alkaline earth metal cation, and Ln is a 

lanthanide, mixing of the A and Ln cations will only occur on the 4f, or Ln(1), site, 

leaving the 6h, or Ln(2), site fully occupied by the Ln cations.  Compounds with 

compositions AxLn10-x(SiO4)6OF or AxLn10-x(SiO4)6F2, on the other hand, typically exhibit 

mixing of the A and Ln cations on both the 4f and 6h sites. 2.23 The 4f and 6h sites are 

shown in Figure 2.4. 

In the AxLn10-x(SiO4)6X2 apatite structure, there are two unique lanthanide 

polyhedra (Ln(1) and Ln(2)), an isolated SiO4 tetrahedra, and an O(4) site that contains 

either O2-, F-, or a mix of O2- and F-. Ln(1) is located in a six coordinated twisted trigonal 

prism, Ln(2) is located in a seven-coordinated distorted pentagonal bipyramid, and Si(1) 

is located in an isolated tetrahedron.  Ln(1) and Ln(2) form columns down the c axis.  The 

Ln(1) columns are formed by face-shared stacking of distorted trigonal prisms, as shown 

in Figure 2.3. The Ln(2) columns are formed when three Ln(2) polyhedra in each layer 

corner share through the O(4)/F(1) site to form Ln(2)3O19 units, as depicted in Figure 2.5.  

The Ln(2)3O19 units are rotated by 60 ° (Figure 2.5) to form the Ln(2) polyhedra columns 

down the c axis (Figure 2.6). The lanthanide polyhedra are connected via edge sharing of 

the Ln(1) polyhedra with three of the Ln(2) columns.  The isolated SiO4 tetrahedra are 
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located between the Ln(1) and Ln(2) containing columns. The overall view of the 

structure down the c axis is shown in Figure 2.7.  In all of the compounds reported 

herein, the average Si-O bond distance is 1.62 Å, the average Ln(1)-O interatomic 

distance is 2.55 Å, and the average Ln(2) – O  interatomic distance is 2.42 Å.  Selected 

interatomic distances are tabulated in Table 2.3. 

The metaprism twist angles of the Ln(1) polyhedra for the seven compounds 

range from 22.43 – 22.23 °.  These values fall into the range of twist angles of 5 – 25 °, 

which is expected for apatites crystallizing in the P63/m space group. 2.32   

X-ray Photoelectron Spectroscopy 

  The preparation of oxyfluoride samples via the solid-state route readily leads to 

the desired composition and structure.  However, since it is very difficult to differentiate 

between oxygen and fluorine by X-ray diffraction, and because of the possibility that 

fluorine might be lost during the synthesis, X-ray photoelectron spectroscopy was used to 

confirm the presence of fluorine in a polycrystalline sample of Na1.5Eu8.5(SiO4)6OF.  The 

survey scan in Figure 2.8 covered the entire sample surface and confirms the existence of 

Na, Eu, Si, O, and F elements.  A high-resolution XPS spectrum covering the range of 

705-670 eV revealed a peak at 685 eV (after a correction with C 1s, 284.6 eV), as shown 

in Figure 2.8, which conclusively indicates the presence of metal bound fluorine; it 

matches well with the metal bound F 1s peak ranges (684-685.8 eV) given in the 

Handbook of X-ray Photoelectron Spectroscopy.2.33 These results confirm the presence of 

fluorine in the polycrystalline sample of Na1.5Eu8.5(SiO4)6OF and its coordination nature. 
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Photoluminescence 

Fluorescence data were collected on solid state powders of NaEu9(SiO4)6O2, 

Na1.5Eu8.5(SiO4)6OF, Eu9.34(SiO4)6O2, and Gd9.34(SiO4)6O2. The room temperature 

emission spectra for the europium containing compounds are shown in Figure 2.9, and 

the excitation spectra are shown in Figure 2.10. The emission spectra for the europium 

containing compounds were collected using an excitation wavelength of 230 nm, while 

the excitation spectra of the compounds were collected using an emission wavelength of 

607 nm.  The maximum emission peaks at 607 nm are typical for europium containing 

compounds.2.34 In Figure 2.10, the excitation peaks of the europium containing 

compounds follow the expected set of peaks from 350 – 425 nm that indicate the 

transitions within the 4f 6  configuration of the Eu3+ cation. 

For the gadolinium compound, the excitation and emission spectra are displayed 

in Figure 2.11.   The excitation wavelength was 250 nm, and the emission wavelength 

was 622 nm. The gadolinium compound exhibits excitation and emission spectra peaks 

consistent with expected values for gadolinium containing compounds.   

 A close look at the luminescence data for NaEu9(SiO4)6O2, Na1.5Eu8.5(SiO4)6OF, 

and Eu9.34(SiO4)6O2 demonstrates that the excitation and emission data are almost 

identical.  This suggests that changing the ratio of the cation atoms on the Ln sites and of 

the anion atoms on the X site does not change the luminescence.  This result supports the 

hypothesis that doping other luminescent cations onto the lanthanide site will allow 

tuning of the luminescence.   
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Magnetic Properties 

 The temperature dependencies of the magnetic susceptibilities of 

NaEu9(SiO4)6O2, Na1.5Eu8.5(SiO4)6OF, Eu9.34(SiO4)6O2, and Gd9.34(SiO4)6O2 were 

measured over the temperature range of 2-300 K and are shown in Figures 2.12 – 2.13.  

The europium containing compounds display van Vleck paramagnetism, while the 

gadolinium compound follows the Curie-Weiss law.  The effective moment at 300 K was 

determined for the three europium compounds, NaEu9(SiO4)6O2, Eu9.34(SiO4)6O2, and 

Na1.5Eu8.5(SiO4)6OF, and found to be 3.40, 3.42, and 3.18 B/Eu, which compares well 

with the generally accepted 300 K value for Eu3+ of 3.4 B/Eu.   The Gd9.34(SiO4)6O2 

susceptibility data collected from 2 – 300 K, when fit to the Curie-Weiss law, yielded an 

effective moment of 7.86 B/Gd and a Weiss constant of θ = 0.3 K, which compares well 

to the expected value of 7.94 B/Gd.  

Conclusion  

Single crystals of compounds of the apatite structure type, NaEu9(SiO4)6O2, 

Na1.5Eu8.5(SiO4)6OF, Na1.64Gd8.36(SiO4)6O0.72F1.28, Gd9.34(SiO4)6O2, 

Ca2.6Eu7.4(SiO4)6O1.4F0.6, Ca4.02Sm5.98(SiO4)6F2, and K1.32Pr8.68(SiO4)6O1.36F0.64, were 

synthesized in fluoride fluxes, and NaEu9(SiO4)6O2, Na1.5Eu8.5(SiO4)6OF, 

Eu9.34(SiO4)6O2, and Gd9.34(SiO4)6O2 were prepared as polycrystalline powders using 

solid state synthesis techniques.  As previously reported, the mixing of the Ln(2) cation 

site is dependent upon substitution on the O(4) site with either F- or OH-.  The 

luminescent properties of the silicon containing apatites indicate that these compounds 

may find potential applications in solid-state lighting, because the luminescence may be 

tunable.     
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Table 2.1.  Reaction conditions of the flux crystal growth syntheses of the titled compounds. 

Compound Reactants Flux Flux 

Melting Point 

Dwell Temp. 

Time 

Cooling Temp. 

Rate 

Na1.5Eu8.5(SiO4)6OF Eu2O3 

2mmol 

Na2CO3 

2mmol 

SiO2 

4mmol 

NaF 993 °C 1150 °C 

12 h 

1000 °C 

6 °C/h 

NaEu9(SiO4)6O2 Eu2O3 

2mmol 

Na2CO3 

2mmol 

SiO2 

4mmol 

NaF:Na2MoO4 614 °C 750 °C 

12 h 

550 °C 

6 °C/h 

Na1.62Gd8.36(SiO4)6O0.72F1.28 Gd2O3 

1mmol 

 SiO2 

2mmol 

NaF:Na2MoO4 614 °C 750 °C 

12 h 

550 °C 

6 °C/h 

Gd9.34(SiO4)6O2 Gd2O3 

1mmol 

 SiO2 

2mmol 

KF:KCl 606 °C 750 °C 

10 days 

550 °C 

6 °C/h 

Ca2.6Eu7.4(SiO4)6O1.4F0.6 Eu2O3 

1mmol 

CaCO3 

2mmol 

SiO2 

1mmol 

KF:KCl 606 °C 750 °C 

24 h 

550 °C 

6 °C/h 

Ca4.02Sm5.98(SiO4)6F2 Sm2O3 

1mmol 

CaCO3 

2mmol 

SiO2 

1mmol 

KF:KCl 606 °C 750 °C 

24 h 

550 °C 

6 °C/h 

K1.32Pr8.68(SiO4)6O1.36F0.64 Pr2O3 

2mmol 

 SiO2 

4mmol 

KF 858 °C 1000 °C 

24 h 

800 °C 

6 °C/h 
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Table 2.2. Crystallographic data for the reported compounds where all crystallize in the hexagonal crystal system. 

 

Formula NaEu9(SiO4)6O2 Na1.5Eu8.5(SiO4)6OF Na1.64Gd8.36(SiO4)6O0.72F1.28 Gd9.34(SiO4)6O2 

Formula weight 1975.18 1913.69 1940.02 2052.16 

Temperature (K) 296(2) 296(2) 296(2) 296(2) 

Crystal System Hexagonal Hexagonal Hexagonal Hexagonal 

Space group P 63/m P 63/m P 63/m P 63/m 

a (Å) 9.4434(1) 9.4492(4) 9.4257(2) 9.4366(2) 

c (Å) 6.9150(2) 6.9155(7) 6.8850(2) 6.9345(2) 

V (Å3) 534.047(19) 534.74(6) 529.74(3) 534.78(3) 

Z 2 2 2  2  

Density (mg/m3) 6.141 5.943 6.081 6.372 

Absorption coefficient 

(mm-1) 
26.481 25.021 26.259 28.953 

Crystal size (mm3) 0.12 × 0.04 × 0.04 0.09 × 0.04 × 0.04 0.08 × 0.06 × 0.04  0.10 × 0.06 × 0.05  

2 theta range (°) 4.98 to 65.17 4.98 to 56.56 4.99 to 70.13  4.98 to 70.59  

reflections collected 12296 7410 15179  14658  

data/restraints/parameters 707 / 0 / 41 485 / 1 / 42 837 / 0 / 42 861 / 0 / 39  

R (int) 0.0359 0.0250 0.0395 0.0360 

GOF (F2) 1.292 1.179 1.245 1.341 

R indices (all data) 
R1 = 0.0228 R1 = 0.0195 R1 = 0.0265 R1 = 0.0280 

wR2 = 0.0482 wR2 = 0.0409 wR2 = 0.0562 wR2 = 0.0646 
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Table 2.2. (Continued) 

 

Formula Ca4.02Sm5.98(SiO4)6F2 Ca2.6Eu7.4(SiO4)6O1.4F0.6 K1.32Pr8.68(SiO4)6O1.36F0.64 

Formula weight 1650.98  1814.6  1861.17 

Temperature (K) 296(2)  296(2)  294(2) 

Crystal System Hexagonal Hexagonal Hexagonal 

Space group P 63/m P 63/m P 63/m 

a (Å) 9.4792(6)  9.4515(2)  9.6103(2) 

c (Å) 6.9358(8)  6.9181(3)  7.1367(2) 

V (Å3) 539.72(9)  535.20(3)  570.82(2) 

Z 2 2  2 

Density (mg/m3) 5.079  5.630  5.414 

Absorption coefficient 

(mm-1) 
17.429  22.417  18.814 

Crystal size (mm3) 0.12 × 0.04 × 0.03  0.12 × 0.03 × 0.02  0.24 x 0.12 x 0.10 

2 theta range (°) 4.96 to 70.12  4.98 to 71.16  4.90 to 56.58 

reflections collected 12616 14418  5979 

data/restraints/parameters 849 / 0 / 42  879 / 0 / 43  510 / 0 / 42 

R (int) 0.0516 0.0396 0.0310 

GOF (F2) 1.314  1.291  1.299 

R indices (all data) 

 

R1 = 0.0483 R1 = 0.0268 R1 = 0.0152 

wR2 = 0.0808 wR2 = 0.0583 wR2 = 0.0356 
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Table 2.3.  Selected Bond Distances (in Å) for NaEu9(SiO4)6O2, Na1.5Eu8.5(SiO4)6OF, Na1.64Gd8.36(SiO4)6O0.72F1.28, Gd9.34(SiO4)6O2, 

Ca4.02Sm5.98(SiO4)6F2, Ca2.6Eu7.4(SiO4)6O1.4F0.6, and K1.32Pr8.68(SiO4)6O1.36F0.64. 

 

 NaEu9(SiO4)6O2 Na1.5Eu8.5(SiO4)6OF Na1.64Gd8.36(SiO4)6O0.72F1.28 Gd9.34(SiO4)6O2 

Ln(1) – O(2) (x3) 2.382(3) 2.386(4) 2.373(3) 2.387(4) 

Ln(1) – O(1) (x3) 2.456(3) 2.463(3) 2.449(3) 2.475(4) 

Ln(1) – O(3) (x3) 2.813(4) 2.830(5) 2.803(4) 2.813(5) 

Ln(2) – X 2.2431(3) 2.2646(3) 2.2532(3) 2.2254(3) 

Ln(2) – O(3) (x2) 2.336(3) 2.331(4) 2.317(3) 2.346(4) 

Ln(2) – O(1) 2.405(4) 2.393(5) 2.382(4) 2.401(5) 

Ln(2) – O(3) (x2) 2.489(4) 2.484(4) 2.479(4) 2.473(4) 

Ln(1) – O(2) 2.664(5) 2.654(5) 2.662(5) 2.648(7) 

 Ca4.02Sm5.98(SiO4)6F2 Ca2.6Eu7.4(SiO4)6O1.4F0.6 K1.32Pr8.68(SiO4)6O1.36F0.64 

Ln(1) – O(2) (x3) 2.384(4) 2.377(3) 2.467(2) 

Ln(1) – O(1) (x3) 2.441(5) 2.443(3) 2.535(2) 

Ln(1) – O(3) (x3) 2.820(7) 2.799(4) 2.870(3) 

Ln(2) – X 2.3287(6) 2.2465(3) 2.2814(2) 

Ln(2) – O(3) (x2) 2.325(5) 2.330(3) 2.429(3) 

Ln(2) – O(1) 3.386(7) 2.412(4) 2.462(3) 

Ln(2) – O(3) (x2) 2.505(5) 2.495(3) 2.550(2) 

Ln(1) – O(2) 2.680(8) 2.703(5) 2.684(4) 

X = O(4) or F(1), respectively 
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Figure 2.1. PXRD pattern of 

NaEu9(SiO4)6O2, Na1.5Eu8.5(SiO4)6OF, 

and Gd9.34(SiO4)6O2. The observed 

patterns are in good agreement with 

the calculated patterns. 
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Figure 2.2. Powder diffraction of the polycrystalline sample of Eu9.34(SiO4)6O2 

where the calculated powder diffraction pattern of Gd9.34(SiO4)6O2 is overlaid in 

red to indicate that Eu9.34(SiO4)6O2 was synthesized. 
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Figure 2.3. Crystal structure of Na1.5Eu8.5(SiO4)6OF, which is representative of the 

titled compounds. The left image represents the Ln(1) columns where the 

distortion of the columns can be seen, and the image on the right indicates the view 

of the Ln(1) columns shown down the c axis, where the purple polyhedra are the 

Ln(1) site, the orange spheres represent the Ln(2) site, and the blue spheres 

indicate the Si site. 
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Figure 2.4. Crystal structure of 

K1.32Pr8.68(SiO4)6O1.36F0.64, which is representative 

of the titled compounds. The 4f, or Ln(1), site is 

shown as purple polyhedra, the 6h site is shown as 

orange polyhedra, and the O(4)/F(1) site is shown 

as green spheres. 
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Figure 2.5. Crystal structure of Na1.5Eu8.5(SiO4)6OF, a 

representative structure of the titled compounds. The 

Ln(2)3O19 or Ln(2)3O18F group is shown on the left, where 

the orange polyhedra indicate each Ln(2)O7 or Ln(2)O6F 

unit, and the green atom is the O(4) or F(1) site. The 

image on the left represents the 60 ° rotation that occurs to 

the Ln(2)3O19 units to form the columns down the c axis. 
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Figure 2.6. Crystal structure of Na1.5Eu8.5(SiO4)6OF, which is representative of the 

titled compounds. The image on the left shows the stacking of the Ln(2)3O19 units 

down the a axis, and the image on the right is the view of the columns down the c 

axis. The orange polyhedra represent the Ln(2) site, the purple spheres represent the 

Ln(1) site, the blue spheres represent the Si site, and the green spheres represent the 

O(4)/F(1) site. 
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Figure 2.7. Crystal structure of Na1.5Eu8.5(SiO4)6OF, a 

representative structure of the titled compounds down the c 

axis, where the Ln(1) polyhedra are shown in purple, Ln(2) 

polyhedra are shown in orange, SiO4 tetrahedra are shown 

in blue, and the O(4)/F(1) site is shown in green. 
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Figure 2.8. XPS data of Na1.5Eu8.5(SiO4)6OF. The image on the left depicts 

the survey scan that indicates the presence of Na, Eu, Si, O, and F, and the 

image on the right depicts the detailed scan of the region where the peak 

around 685 eV indicates the presence of metal fluoride bonding. 
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Figure 2.9. Emission spectra of 

NaEu9(SiO4)6O2, Na1.5Eu8.5(SiO4)6OF, and 

Eu9.34(SiO4)6O2.   
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Figure 2.10. Excitation spectra of 

NaEu9(SiO4)6O2, Na1.5Eu8.5(SiO4)6OF, and 

Eu9.34(SiO4)6O2. 
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Figure 2.11. Emission and excitation 

spectra of Gd9.34(SiO4)6O2. 
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Figure 2.12. Temperature dependence of the 

magnetic susceptibility data and of the magnetic 

moments of Eu9.34(SiO4)6O2, NaEu9(SiO4)6O2, and 

Na1.5Eu8.5(SiO4)6OF. 
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Figure 2.13. Temperature dependence of the 

magnetic susceptibility data and of the magnetic 

moment of Gd9.34(SiO4)6O2. 
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Chapter 3 

Crystal Growth and Structure of Three New Neodymium Containing Silicates:  

Na0.5Nd4.50(SiO4)3O, Na0.63Nd4.37(SiO4)3O0.74F0.26 and Nd4.74Nd4.26(O0.52F0.48)[SiO4]4* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Latshaw, A. M., Smith, M. D., zur Loye, H.-C. Solid State Sci., 2014, 35, 28-32. 
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Introduction 

 Flux crystal growth has become a popular technique for obtaining new materials 

in single crystal form.  As each system tends to be unique, different reaction conditions 

have to be explored and fluxes need to be chosen to match reactivity, melting points, and 

solubility of the reagents used in the synthesis.3.1  Utilizing eutectic compositions of the 

flux components can lower the melting points of fluxes, for example the eutectic ratios of 

alkali fluorides used for the synthesis of the title compounds.  A flux is deemed reactive 

when one or more of the elements present in the product crystals have originated in the 

flux.  All three of the new neodymium silicate compositions discussed in this paper 

contain sodium and two of the three also contain fluorine, both of which originated in the 

NaF and KF flux mixture, making this a reactive flux crystal growth process.   

Silver reaction vessels are used because of their inertness to fluoride melts; 

however, the melting point of NaF flux (mp 993 °C) is too high to be used with the silver 

reaction vessels (mp 962 °C).  Therefore, a eutectic of NaF/KF (mp 718 °C) was chosen 

for these crystal growth reactions in order to lower the melting point of the reaction 

below the melting point of the silver reaction vessels.  An additional advantage, beyond 

its lower melting point, is the greater solubility with which the NaF/KF eutectic can be 

dissolved in water and thus removed to isolate the reaction products. 

Several neodymium silicate compositions have been studied for their applications 

as laser hosts3.2, 3.3 and for their ionic conductivity, which enables their applications in 

solid oxide fuel cells (SOFCs)3.4, 3.5.  Many of the silicate materials that have been studied 

as electrolytes in SOFCs have been members of the apatite structural family.  The 

simplest composition of the apatite structure is A5(BO4)3O where A represents an alkali, 
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alkaline-earth, lanthanide or mixture of those cations and B represents a silicon, 

phosphorous, boron, sulfur, vanadium or arsenic cation.3.6  In this study, the flux crystal 

growth produced two phases with general compositions NaxNd5-x(SiO4)3O1-yFy, that form 

the apatite structure, where A has two cations (Na+ and Nd3+), Si takes on the B site, and 

one composition contains fluorine while the other does not.  As with other apatites, the 

presence of fluorine creates mixing of the Na and Nd on both of the A sites, while the 

absence of fluorine allows mixing on only the A(1) site.  It is well known that the apatite 

structure can crystallize in various space groups, including P63/m, in which two title 

compounds of this paper crystallize.    

 The third neodymium composition is an oxy-fluoride silicate, 

Na4.74Nd4.26(O0.52F0.48)[SiO4]4, which is isostructural to other previously reported 

compounds, including Na5Nd4(OH)[SiO4]4, Na5Y4F[SiO4]4, and K5La4F[SiO4]4.
3.7-3.9  

Unlike for the previously reported compounds, the new oxy-fluoride silicate compound 

has mixing of the lanthanide cation onto the alkali metal site and mixing of oxygen onto 

the OH / F site.   

 Herein we detail our approach to the single crystal growth of three Nd silicates 

from reactive hydroxide fluxes, Na0.50Nd4.50(SiO4)3O, Na0.63Nd4.37(SiO4)3O0.74F0.26, and 

Na4.74Nd4.26(O0.52F0.48)[SiO4]4, and describe the crystal structures of the three new 

compounds. 

Experimental 

Crystal Growth 

Crystals of Na0.50Nd4.50(SiO4)3O, Na0.63Nd4.37(SiO4)3O0.74F0.26, and 

Na4.74Nd4.26(O0.52F0.48)[SiO4]4 were prepared by loading a 1mmol:0.75mmol ratio of 
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Nd2O3 (Alfa Aesar, 99.9 %) : SiO2 (Aldrich, 99.99 %) into a silver crucible.  5.03g:4.63g 

of NaF (Alfa Aesar, 99 % min.) : KF (Alfa Aesar, 99 % min.) flux were placed on top of 

the reactants and a silver lid was loosely fitted onto the crucible.  The crucible was placed 

into a programmable furnace that was heated to 850 °C in 1.5 h, allowed to dwell there 

for 24 h, and then slow cooled at a rate of 3 °C per hour to 600 °C, after which the 

furnace was shut off.  The flux was washed away using water, aided by sonication, and 

then the crystals were isolated by filtration.  Crystals of all three compositions formed 

during the same reaction. 

Single Crystal X-ray Diffraction 

 X-ray intensity data from a light blue or purple Na0.50Nd4.50(SiO4)3O hexagonal 

plate (100(2) K), a Na0.63Nd4.37(SiO4)3(O0.74F0.26) bar crystal (296(2) K), and a 

Na4.74Nd4.26(O0.52F0.48)[SiO4]4 polyfaceted crystal (296(2) K) were collected using a 

Bruker SMART APEX diffractometer (Mo Kα radiation, λ = 0.71073 Å).3.10, 3.11 The data 

collection covered 100% of reciprocal space to 2θmax = 70.2°, 71.0°, and 70.1° with an 

average reflection redundancy of 13.4, 15.3, and 9.8 and Rint = 0.064, 0.054, and 0.032, 

respectively, after absorption correction. The raw area detector data frames were reduced 

and corrected for absorption effects using the SAINT+ and SADABS programs.3.11 Final 

unit cell parameters were determined by least-squares refinement of 1642, 2473, and 

3918 respective reflections from the data set. Difference Fourier calculations and full-

matrix least-squares refinement against F2 of the structural model were performed with 

SHELXL-2014/12 using ShelXle.3.12 

Na0.50Nd4.50(SiO4)3O and Na0.63Nd4.37(SiO4)3O0.74F0.26 crystallize in the hexagonal 

space group P63/m as determined by the pattern of systematic absences in the intensity 
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data and by structure solution. They both adopt the apatite, (Ca5(PO4)3F), structure type. 

The asymmetric unit consists of two lanthanide sites, Ln(1) and Ln(2), where in 

Na0.50Nd4.50(SiO4)3O the Ln(1) site is mixed with Nd(1) and Na(1) while Ln(2) is only 

Nd(2).  In Na0.63Nd4.37(SiO4)3O0.74F0.26, the Ln(1) site is occupied by Nd(1) and Na(1) and 

the Ln(2) site is occupied by Nd(2) and Na(2).  The asymmetric unit also consists of one 

silicon atom and four oxygen atom sites.  In Na0.50Nd4.50(SiO4)3O, all four oxygen atom 

sites are oxygen while in Na0.63Nd4.37(SiO4)3O0.74F0.26 there are three pure oxygen sites 

and one mixed oxygen/fluorine site.  Ln(1) atoms are located on a three-fold axis 

(Wyckoff symbol 4f, site symmetry 3), Ln(2), Si(1), O(1), and O(2) atoms are located on 

mirror planes (site 6h, site symmetry m).  Oxygen O(3) is located on a general position 

(site 12i), and the O(4) or mixed oxygen/fluorine site O(4)/F(4) is located on site 2a with 

-6 site symmetry.  Final atomic coordinates were standardized with Structure Tidy.3.13-

3.15  Further details of the crystal structure investigation on Na0.50Nd4.50(SiO4)3O and 

Na0.63Nd4.37(SiO4)3O0.74F0.26 can be obtained from the Fachinformationszentrum 

Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (email: crystdata@fiz-

karlsruhe.de) using the depository numbers 428489 and 428490, respectively. 

Na4.74Nd4.26(O0.52F0.48)[SiO4]4  crystallizes with a body-centered tetragonal lattice. 

The pattern of systematic absences in the intensity data was consistent with the space 

groups I4, I-4 and I4/m. Space group I-4 (No. 82) was eventually shown to be correct. 

The finished structural model was checked with the ADDSYM program in PLATON, 3.16-

3.19 which found no missed symmetry. The published data for the neodymium hydroxide 

analog3.7 was taken as a starting model for refinement. The asymmetric unit of this 

structure type consists of one rare earth atom, one silicon atom, two sodium atoms and 
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five oxygen atoms. All atoms are located on positions of general crystallographic 

symmetry (Wyckoff site 8g) except for sodium Na(2), located on the origin (site 2a, -4 

site symmetry) and a mixed oxide / fluoride site O(1)/F(1), located on site 2b (-4 site 

symmetry).  Further details of the crystal structure investigation on 

Na4.74Nd4.26(O0.52F0.48)[SiO4]4  can be obtained from the Fachinformationszentrum 

Karlsruhe using the depository number 428491. 

Magnetic Property Measurements 

 The magnetic properties of a sample containing all three phases were measured 

using a Quantum Design Magnetic Property Measurement System (QD-MPMS3 SQUID 

VSM).  The multi-component sample followed Curie-Weiss behavior down to 2 K 

indicating the absence of any long range magnetic ordering in all three phases. 

Results and Discussion 

Crystal Structure 

 Single crystals of the three title compositions were grown out of a molten NaF:KF 

eutectic flux.  The flux mixture of NaF (60 %) and KF (40 %) has a melting point of 718° 

C.  The crystal growth reaction in this eutectic flux yielded three compositions, 

Na0.50Nd4.50(SiO4)3O, Na0.63Nd4.37(SiO4)3O0.74F0.26, and Na4.74Nd4.26(O0.52F0.48)[SiO4]4, all 

of which incorporated sodium from the flux.   

 Na0.50Nd4.50(SiO4)3O and Na0.63Nd4.37(SiO4)3O0.74F0.26 are both isostructural with 

known oxyapatites.3.20, 3.21  Both of these compositions crystallize in the hexagonal space 

group P63/m.  Relevant crystallographic data for the two structures are listed in Table 3.1.  

A previous paper reported the synthesis of a powder sample of Na0.50Nd4.50(SiO4)3O via a 
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solid state reaction.3.22 Based on powder X-ray diffraction data obtained on ground 

crystals, it appeared likely that the crystals we grew were the same compound.  To 

confirm the identity of the material and to obtain a high-resolution structure refinement, 

we determined the single crystals structure. The advantage of a single crystal over a 

simple powder based X-ray structure solution is that one can typically locate the atomic 

positions with greater precision and, hence, generate more precise interatomic distances. 

For this reason, the single crystal structure data are included in this paper.  

In the oxyapatite structure, there are two lanthanide sites (Nd(1) and Nd(2)), one 

silicon site, and four unique oxygen environments, one of which, (O(4)), can contain 

fluorine.  Nd(1) is located in a six coordinated twisted trigonal prism coordination 

environment, while Nd(2) is located in a seven coordinated distorted pentagonal 

bipyramid.   Si(1) is located in an isolated tetrahedron.  The Nd(1) polyhedra form face-

shared columns down the c axis (Figure 3.1) while the Nd(2) polyhedra form a column 

of corner-shared polyhedra down the c axis (Figure 3.2).  Three Nd(2)O7 polyhedra 

corner-share together through the O(4)/F(1) site forming a Nd(2)3O19 unit as seen in 

Figure 3.3.  The Nd(2)3O19 units form columns down the c axis by corner-sharing with 

another Nd(2)3O19 unit.  Each unit is rotated 60 ° clockwise from the unit before it as 

shown in Figure 3.3.   The Nd(1) columns edge share with three of the Nd(2) columns 

and the isolated SiO4 tetrahedra lie between a Nd(1) and a Nd(2) column, as shown in 

Figure 3.4.  For the two compounds reported here the average Si-O bond distance is 

1.627 Å, the average Nd(1)-O interatomic distance is 2.454 Å, and the average Nd(2) – O 

interatomic distance is 2.468 Å.  The precision of these numbers represents a significant 
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improvement over the published values based on powder data.3.22  Selected interatomic 

distances are given in Table 3.1.   

 Na4.74Nd4.26(O0.52F0.48)[SiO4]4 is isostructural with Na5Nd4(OH)[SiO4]4, 

Na5Y4F[SiO4]4, and K5La4F[SiO4]4.
3.7-3.9  Na4.74Nd4.26(O0.52F0.48)[SiO4]4 crystallizes in the 

tetragonal space group I-4.  The crystallographic data are given in Table 3.2.  This 

structure has one unique neodymium site, which is eight coordinate.  The Nd polyhedra 

are face-shared with two other Nd polyhedra.  Four Nd polyhedra bond to the O(1)/F(1) 

site creating a Nd4O21 unit consisting of four polyhedra as shown in Figure 3.5.  Each 

Nd4O21 unit corner shares with four other Nd4O21 units (Figure 3.5).  Looking down the 

b axis, it is apparent that the Nd4O21 units arrange in two unique sheets, where the first 

sheet contains isolated Nd4O21 units and the second sheet contains Nd4O21 units that 

occupy the openings left by sheet 1 (Figure 3.6).  The sodium atoms Na(1) and Na(2) sit 

in the channels created by the Nd4O21 units (Figure 3.7).  Na(2) atoms are positioned 

directly under the O(1)/F(1) site and Na(1) atoms are arranged in a square shape, 

occupying the four corners of the channels between four of the Nd units, Figure 3.5.  The 

SiO4 tetrahedra are both edge and corner shared to Nd polyhedra.  A view down the c axis 

is shown in Figure 3.8.  In the case of Na4.74Nd4.26(O0.52F0.48)[SiO4]4, both Na sites have 

mixed site occupancy and share the site with a small amount of Nd, 0.048(2) Nd on Na(1) 

and 0.069(4) Nd on Na(2).  The mixing of Nd onto the sodium sites necessitates the 

mixing of oxygen on the F(1) (O: 0.52 / F: 0.48) site to charge balance the structure. The 

average Si – O bond distance is 1.629 Å, typical for SiO4 tetrahedra.  Other selected 

interatomic distances are given in Table 3.3.  Bond valence sum calculations3.23, 3.24 for 
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the three compositions resulted in values of 1.22 – 1.24, 4.11 – 4.12, and 2.76 – 2.81 for 

Na+, Si4+, and Nd3+, respectively, consistent with the expected values.    

 Magnetic data was collected on a sample that contained all three phases.  Since 

the multi-component sample showed no magnetic ordering down to 2 K, there was no 

attempt to get phase pure samples for magnetic measurements.   

Conclusion 

 Using a eutectic mixture of KF/NaF, we have synthesized crystals of three new 

neodymium oxo-silicates and oxy-fluoride silicates.  Na0.50Nd4.50(SiO4)3O and 

Na0.63Nd4.37(SiO4)3O0.74F0.26 are members of the apatite structure and 

Na4.74Nd4.26(O0.52F0.48)[SiO4]4 is the first reported member of a series of isostructural 

compounds that exhibits mixing of the lanthanide atom onto the sodium site.   
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Table 3.1.  Selected Interatomic Distances (in Å) for Na0.50Nd4.50(SiO4)3O, and 

Na0.63Nd4.37(SiO4)3O0.74F0.26. 
 

 Na0.50Nd4.50(SiO4)3O Na0.63Nd4.37(SiO4)3O0.74F0.26 

Nd(1) – O(2) (x3) 2.423(3) 2.425(3) 

Nd(1) – O(1) (x3) 2.487(3) 2.482(3) 

Nd(1) – O(3) (x3) 2.828(4) 2.821(4) 

Nd(2) – X 2.2585(3) 2.2638(3) 

Nd(2) – O(3) (x2) 2.382(4) 2.396(3) 

Nd(2) – O(1) 2.454(4) 2.451(4) 

Nd(2) – O(3) (x2) 2.547(4) 2.545(3) 

Nd(1) – O(2) 2.688(5) 2.703(5) 

X = O(4) or F(1), respectively 
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Table 3.2. Crystallographic data for Na0.50Nd4.50(SiO4)3O, and Na0.63Nd4.37(SiO4)3O0.740.26, and Na4.74Nd4.26(O0.52F0.48)[SiO4]4. 

 

Formula Na0.50Nd4.50(SiO4)3O Na0.63Nd4.37(SiO4)3O0.74F0.26 Na4.74Nd4.26(O0.52F0.48)[SiO4]4 

Formula weight 952.85 938.04 1109.48 

Temperature (K) 100(2) 296(2) 296(2) 

Crystal system Hexagonal Hexagonal Tetragonal 

Space group P 63/m P 63/m I -4 

a (Å) 9.5400(3) 9.5533(3) 12.1255(3) 

c (Å) 7.0331(5) 7.0510(4) 5.4656(2) 

V (Å3) 554.34(5) 557.30(5) 803.59(5) 

Z 2 2 2 

Density (mg/m3) 5.709 5.590 4.585 

Absorption coefficient 

(mm-1) 
21.128 20.437 14.056 

Crystal size (mm3) 0.10 x 0.06 x 0.05 0.10 x 0.06 x 0.05 0.10 x 0.06 x 0.05 

2 theta range (°) 4.93 to 70.19 4.92 to 70.06 4.75 to 70.18 

reflections collected 11847 13540 9475 

data/restraints/parameters 877 / 0 / 40 880 / 0 / 41 1774 / 0 / 71 

R (int) 0.0643 0.0538 0.0318 

GOF (F2) 1.101 1.147 1.072 

R indices (all data) R1 = 0.0381 R1 = 0.0343 R1 = 0.0270 

 wR2 = 0.0658 wR2 = 0.0600 wR2 = 0.0538 
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Table 3.3.  Selected Interatomic Distances (in Å) for Na4.74Nd4.26(O0.52F0.48)[SiO4]4. 

 

 Na4.74Nd4.26(O0.52F0.48)[SiO4]4 

Nd(1) – O(2)  2.374(4) 

Nd(1) – O(5)  2.419(4) 

Nd(1) – O(5) 2.431(5) 

Nd(1) – O(2) 2.465(5) 

Nd(1) – O(4) 2.466(4) 

Nd(1) – O(3) 2.470(4) 

Nd(1) – O(4) 2.640(4) 

Nd(1) – O(1)/F(1) 2.6523(3) 
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Figure 3.1. View down the b-axis of the crystal structure 

of Na0.63Nd4.37(SiO4)3O0.74F0.26, highlighting the Nd(1) 

columns. This representation also applies to the iso-

structural Na0.50Nd4.50(SiO4)3O. Nd(1) columns are 

shown in purple, Nd(2) polyhedra are represented by the 

orange spheres and silver bonds, SiO4 tetrahedra are 

shown in blue, and the O(4)/F(1) site is shown as green 

spheres.   
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Figure 3.2. Crystal Structure of Na0.63Nd4.37(SiO4)3O0.74F0.26, 

illustrating the Nd(2) columns. This representation also applies to 

the iso-structural Na0.50Nd4.50(SiO4)3O. Nd(2) columns are shown 

in orange, Nd(1) polyhedra are represented by the purple spheres 

and silver bonds, and the SiO4 tetrahedra are shown in blue.  
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Figure 3.3. Crystal structure of Na0.63Nd4.37(SiO4)3O0.74F0.26. The 

Nd(2)3O19 unit is shown on the left looking down the c-axis. The same 

unit looking perpendicular to the c-axis is shown on the right. All Nd(2) 

atoms are shown in orange and the O(4)/F(1) site is shown in green. 
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Figure 3.4. Crystal structure of Na0.63Nd4.37(SiO4)3O0.74F0.26 

viewed down the c-axis. This representation also applies to the 

iso-structural Na0.50Nd4.50(SiO4)3O. Nd(1) polyhedra are shown in 

purple, Nd(2) polyhedra are shown in orange, SiO4 tetrahedra are 

shown in blue, and the O(4)/F(1) site is shown as green spheres.   
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Figure 3.5. The Nd4O21 building block of the crystal structure of 

Na4.74Nd4.26(O0.52F0.48)[SiO4]4is shown on the left and a more expanded 

view illustrating the structural framework that includes the sodium 

cations is shown on the right. Nd polyhedra are shown in orange, 

O(1)/F(1) atoms are shown in green and Na(1) is shown as purple 

spheres. 
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Figure 3.6. Crystal structure of 

Na4.74Nd4.26(O0.52F0.48)[SiO4]4. The horizontal 

sheets of Nd4O21 are shown, where sheet 1 is 

represented by the striped orange polyhedra and 

sheet 2 is represented by the solid orange 

polyhedra. 
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Figure 3.7. Crystal structure of 

Na4.74Nd4.26(O0.52F0.48)[SiO4]4 viewed down the a-

axis emphasizing the AB layering of the Nd units 

and the positions of Na. Nd is shown as orange 

polyhedra, Na(1) is shown as purple spheres, Na(2) 

is shown as gray spheres, and O(1)/F(1) is shown as 

green spheres. 
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Figure 3.8. Crystal structure of 

Na4.74Nd4.26(O0.52F0.48)[SiO4]4viewed down 

the c-axis. Nd is represented by orange 

polyhedra, Si is represented by blue 

tetrahedra, Na(1) shown as purple spheres, 

and O(1)/F(1) shown as green spheres. 
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 Chapter 4 

A5RE4X[TO4]4 Crystal Growth and Photoluminescence. Hydroflux Synthesis of Sodium 

Rare Earth Silicate Hydroxides* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*Latshaw, A. M.; Chance, W. M.; Trenor, N.; Morrison, G.; Smith, M. D.; Yeon, J.; 

Williams, D. E.; zur Loye, H.-C. CrystEngComm. 2015, 17, 4691-4698. 
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Introduction 

The crystal growth of complex oxides and hydroxides is often carried out in high 

temperature solutions or fluxes.4.1 One drawback of this approach can be the required 

high temperatures, as most high temperature solutions have a high (>400 °C) melting 

point, even when considering the existence of eutectic mixtures.  To create lower 

temperature fluxes requires a modification of the high temperature solutions that goes 

beyond utilizing eutectic mixtures.  One such approach is the hydroflux method,4.2, 4.3 

which utilizes a wet hydroxide flux, in which water has been purposefully added to 

control the acid-base chemistry of the molten flux as described by the Lux-Flood concept 

of oxo-acidity.4.4, 4.5  These hydrofluxes occupy a low temperature regime where, 

importantly, they act as melts and not as aqueous solutions, and therefore do not generate 

high pressures during the crystal growth process.  The low synthesis temperatures 

employed with hydrofluxes make them extremely advantageous for preparing 

hydroxides, such as for the title compounds discussed herein. 

Rare earth containing tetragens, such as silicates and germanates, have been 

studied for their luminescent4.6-4.9 and magnetic4.10, 4.11 properties.  The intense 

luminescent properties of many rare earth ions, especially when present in tetragen 

containing materials, have made them a popular synthetic target for solid state lighting 

applications. In fact, the majority of known rare earth containing tetragen compounds 

were investigated primarily for their photoluminescence properties, although a number of 

researchers have more recently investigated the ionic conductivity of some rare earth 

silicates and hydroxosilicates with the goal of expanding the number of ionically 

conducting solids for applications in fuel cells and battery materials.4.12 In addition, rare 
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earth containing tetragens have been studied for their refractory nature and low thermal 

conductivity.4.13, 4.14  Considering their potential for use in solid state lighting applications 

and for use as solid electrolytes, the rare earth silicates represent an exciting family of 

materials for continued exploration and materials discovery. 

Among the many different classes of structures explored for use in solid state 

lighting, alkali metal containing silicate and germanate structures such as 

Na3RESi2O7,4.15-4.18 K3RESi2O7 (RE=Eu-Lu, Sc),4.8, 4.19, 4.20 K3HoSi3O9,4.21 

K3NdSi6O15,4.22 K1.32Pr8.68(SiO4)6O1.36F0.64,4.23 Na5RESi4O12 (RE = Sm-Lu),4.12 NaxRE10-

x(SiO4)6O2-yFy (RE = Sm, Eu, Gd),4.23 and NaREGeO4 (RE = Sm, Eu, Gd, Tb)4.11 have 

been studied extensively.  A similar structural family, A5RE4X[TO4]4, [A = alkali metal, 

RE = rare earth, T = tetragen] contains several known compounds in closely related 

structure types, and includes Na5Nd4(OH)[SiO4]4,4.24 Na5Y4F[SiO4]4,4.25 

K5La4F[SiO4]4,4.26 Na5Nd4Ge4O16(OH),4.27 and (Na0.63(2)Nd0.37(2))(NaSiO4)4(O0.52F0.48).4.28 

As most rare earths can be accommodated in this tetragen based structure type, it 

represents an attractive host material for new, rare earth based, luminescent materials. 

Herein, we report the synthesis of alkali metal containing silicates 

Na5RE4(OH)(SiO4)4 (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y) using the 

hydroflux technique.  The hydroflux synthetic technique has been demonstrated to 

reliably produce complex metal hydroxides, like those reported here, whose structures, 

magnetic, and luminescent properties are discussed.   
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Experimental Section 

Reagents 

The following reagents were used as received: KOH and NaOH (Fisher Scientific, 

ACS grade pellets), Pr(NO3)3•5H2O (Acros, 99.9 %), Nd2O3, Sm2O3, Eu2O3, Gd2O3, 

Tb4O7, Dy2O3, HO2O3, Er2O3, Tm2O3, Yb2O3, and Y2O3 (Alfa Aesar, 99.9 %), and 

Na2SiO3•9H2O (EM, 99+ %). 

Crystal Growth 

RE = Pr, Nd, Tb - Yb, Y 

0.5 mmol of RE2O3 (RE = Nd, Dy - Yb, Y), or Pr(NO3)3•5H2O was added to a 

NaOH/KOH hydroflux (0.1 mol NaOH/0.1 mol KOH, 0.33 mol H2O) with an excess of 

10-40% of Na2SiO3•9H2O.  The excess of Na2SiO3•9H2O improved the product yield, 

which was essentially quantitative with respect to RE2O3. Reactions were heated at a rate 

of 5 ºC per minute to 230 ºC and held for 3 days with subsequent slow cooling at a rate of 

0.2 ºC per minute to 80 ºC. 

RE = Eu, Gd, Sm  

0.5 mmol of RE2O3 was added to a NaOH hydroflux (0.25 mol NaOH/0.4 mol H2O) with 

an excess of up to 10 % of Na2SiO3•9H2O.  The excess of Na2SiO3•9H2O improved the 

product yield, which was essentially quantitative with respect to RE2O3. Reactions were 

heated at a rate of 5 ºC per minute to 230 ºC and held for 2 days before cooling at a rate 

of 0.2 ºC per minute to 80 ºC. The gadolinium analogue was grown as a polycrystalline 

powder that matched the expected powder pattern based on the other analogues and data 

from a previous work that synthesized the gadolinium analogue.4.29 
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Powder X-ray Diffraction 

 Powder X-ray diffraction data were collected on the polycrystalline sample 

Na5Gd4(OH)[SiO4]4 using a Rigaku Dmax/2100 powder diffractometer using Cu Kα 

radiation.  Data were collected using a step scan covering the 2θ range of 5 – 65 ° in steps 

of 0.04 °.   

Magnetic Measurements 

The DC magnetic susceptibilities were measured as a function of temperature 

using a Quantum Design MPMS 3 SQUID Magnetometer. Ground, polycrystalline 

samples were massed on a balance sensitive to 0.01 mg and loaded into VSM powder 

holder or into gelatin capsules for data collection.  The temperature dependent 

susceptibilities of all samples were measured under zero-field-cooled conditions from 2-

300 K in an applied field of 1000 Oe.  The raw magnetic moments were corrected for 

sample shape and radial offset effects using the method outlined by Morrison and zur 

Loye.4.30 

Luminescence 

A Perkin Elmer LS 55 Fluorescence Spectrometer was used to measure emission 

and excitation spectra of members of the titled compounds that exhibited visible 

luminescence under short-wave UV excitation. The excitation wavelengths used for the 

emission spectra of Na5Tb4(OH)[SiO4]4, Na5Gd4(OH)[SiO4]4, and Na5Eu4(OH)[SiO4]4, 

were 237 nm, 250 nm, and 263 nm, respectively. The maximum emission wavelengths 

observed were 537 nm, 608 nm, and 384 nm, respectively, and were used for excitation 

spectra. All measurements were conducted at room temperature. 

 



www.manaraa.com

72	  
	  

Fluorescence Quantum Yield Measurements 

 Emission spectra were acquired on an Edinburgh FS5 fluorescence spectrometer.  

A 150 W Continuous Wave Xenon Lamp was used for sample excitation, and the 

emission measured using a Hamamatsu R928P photomultiplier tube.  For emission and 

excitation measurements, the polycrystalline powders were placed inside a 0.5 mm 

Teflon sample holder using the SC-10 front-facing module.  The quantum yield 

measurements were acquired using the SC-30 integrating sphere module.  The standard 

Floracle software was used to measure and plot each spectrum, as well as calculate the 

quantum yield.   

Structure Determination 

X-ray intensity data were collected for all samples at 296(2) K using a Bruker 

SMART APEX diffractometer (Mo Kα radiation, λ= 0.71073 Å).4.31 The raw area 

detector data frames were reduced and corrected for absorption effects using the SAINT+ 

and SADABS programs.4.31 The initial structural model was obtained by direct methods 

using SHELXS.4.32, 4.33	  Subsequent difference Fourier calculations and full-matrix least-

squares refinement against F2 were performed with SHELXL-2013/44.32 using the 

ShelXle interface.4.33 

The compounds crystallize in the tetragonal system. The pattern of systematic 

absences in the intensity data indicated only body-centering lattice symmetry, leaving the 

space groups I4, I-4 and I4/m. The non-centrosymmetric group I-4 (No. 82) was 

established as correct by structure solution. This space group choice was checked with 

the ADDSYM program in PLATON, which found no missed symmetry.4.34-4.37 The 

asymmetric unit consists of four metal atom positions (one rare earth, one silicon and two 
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sodium atoms) and five oxygen atom positions. All atoms occupy positions of general 

crystallographic symmetry (Wyckoff position 8g) except atoms Na(2) and O(5). Na(2) is 

located at position 4f, on a two-fold axis of rotation. O(5) is located at position 2c with -4 

site symmetry. Sodium atom Na(2), located on a two-fold axis, is 0.4 Å from the nearby 

fourfold inversion axis at 0,½,¾, and is disordered over two sites by the -4 axis. The 

maximum chemical site occupancy of Na(2) is therefore 0.5. All atoms were refined with 

anisotropic displacement parameters. Trial refinements of the site occupancy factors of 

the rare earth site and Na(1) showed no significant deviations from full occupancy. The 

compound is assumed to be a hydroxide to preserve crystal electroneutrality. A reliable 

position for the hydroxy proton could not be located by difference synthesis and was not 

calculated. It is likely disordered about oxygen atom O(5). Refinement of the Na(2) site 

occupation factor resulted in small decrease from full occupancy (0.5), to 0.45(1), but 

with no change in the R1/wR2 values. No significant decrease in the site occupation factor 

for the associated hydroxide oxygen O(5) was observed. For this reason the Na(2) site 

was kept at full occupancy to maintain change balance.  Further details of the crystal 

structure investigation can be obtained from the Fachinformationszentrum Karlsruhe (e-

mail: crystdata@fiz-karlsruhe.de) on quoting the depository numbers CSD-429271 (Pr), 

429269 (Nd), and 429267 (Sm), 429266 (Eu), 429273 (Tb), 429275 (Dy), 429274 (Ho), 

429270 (Er), 429268 (Tm), 429265 (Yb), and 429272 (Y). 

Results and Discussion 

Synthesis 

Single crystals of Na5RE4(OH)[SiO4]4 (RE = Pr, Nd, Sm, Eu, Tb - Yb, Y) were 

successfully grown in a hydroflux (Figure 4.1).  In all cases, except the Gd analogue, it 
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was possible to obtain crystals of the desired product, however, the specific reaction 

conditions were refined based on experimental outcomes to maximize the yield of the 

product.  In some cases this meant changing the cooling rate, while for others it meant 

using a different hydroflux composition.  In fact, the conditions necessary to synthesize 

pure samples of these oxyhydroxides varied significantly with respect to the constituent 

rare earth, even though one would have expected them to behave chemically very 

similarly. All members of the series were synthesized as pure samples using fairly simple 

reaction profiles. For RE = Eu and Sm, it was necessary to utilize a pure sodium based 

hydroflux since the mixed sodium/potassium hydroflux, used for all other compositions, 

resulted in the formation of RE(OH)3 as a secondary phase for these two rare earths.  The 

specific rare earth precursor, oxide vs. chloride vs. nitrate also had an effect, although 

only the use of the oxide and one nitrate precursor are discussed in this paper.  As with all 

crystal growth reactions, the conditions typically have to be optimized by varying slightly 

the reaction conditions for each individual composition. 

Structures 

The Na5RE4(OH)[SiO4]4 structures, like those previously reported in the 

literature, crystallize in the tetragonal space group I-4.4.24, 4.28, 4.29 Even though the Nd 

analogue has already been published,4.24 it is included in this work because our lattice 

parameters differ and because we investigated the magnetic properties of the 

composition. The crystallographic data for the Na5RE4(OH)[SiO4]4 crystals are given in 

Table 4.1.  This structure consists of one unique silicon site, one unique rare earth site, 

and two unique sodium sites. SiO4 tetrahedra which are isolated from one another edge- 

and corner-share oxygens with nearly square antiprismatic REO7(OH) polyhedra (Figure 
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4.2).  Four of the REO7(OH) polyhedra share faces, creating the RE4O20(OH) units 

depicted in Figure 4.3.  The OH- group, which is disordered, is located at the center of 

the unit. The RE4O20(OH) units are corner-shared to eight other such units in the ab plane 

and separated from each other along the c axis by SiO4 tetrahedra (Figure 4.4).  Na(1) 

atoms are coordinated to seven oxygens in a distorted pentagonal bipyramidal 

environment as seen in Figure 4.5. These polyhedra share edges with four other NaO7 

polyhedra in what can be described as a tetrahedral ladder down the c axis (Figure 4.5).  

The Na(2) atoms are located in the channels between the RE4O20(OH) units and sit 

directly in line with the OH site as seen in Figure 4.6.  The overall structure is shown in 

Figure 4.2.  Bond valence sums were calculated with ranges of 0.67 – 1.10 v.u. for Na, 

2.70 – 3.12 v.u. for RE, and 3.90 – 4.24 v.u. for Si, which confirms the oxidation states of 

Na+, RE3+, and Si4+ for all reported analogues.4.38, 4.39   

Magnetism  

The magnetic data is summarized in Table 4.2.  Figure 4.7 a and b show the 

inverse susceptibilities of Na5RE4(OH)(SiO4)4 (RE = Pr, Nd, Sm, Eu) and (RE = Gd, Tb, 

Dy, Ho, Er, Tm), respectively.  Figure 4.7c shows the susceptibility data for the Eu 

member.  All members of the series, with the exception of the Sm, and Eu containing 

members, follow Curie-Weiss behavior.  Fitting the higher temperature (50 K – 300 K) 

inverse susceptibilities using the Curie-Weiss law yield effective moments in good 

agreement with the calculated moments for the RE3+ cations.  The largest differences 

between the observed and calculated moments are for RE = Pr and Tb and are likely due 

to a higher uncertainty of the sample masses used in the magnetic measurements for these 

analogues.  
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The magnetic susceptibility data of Na5Tb4(OH)(SiO4)4, shown in the inset of 

Figure 4.7b, display a downturn at T = 2.8 K attributed to antiferromagnetic ordering.  It 

is not clear why only this composition exhibits AF ordering, although it is quite possible 

that the other rare earth compositions do as well, however, at temperatures lower than we 

were able to measure on our instrument.  For all samples measured, no differences were 

observed between the zero-field cooled and field cooled susceptibilities, as shown in the 

inset of Figure 4.7b for Na5Tb4(OH)(SiO4)4. 

The Eu and Sm analogues do not exhibit Curie-Weiss behavior. The Eu analogue, 

shown in Figure 4.7c, exhibits Van Vleck paramagnetism, a form of temperature 

independent paramagnetism, below ~100 K.  Below ~45 K, there is a positive deviation 

from the expected behavior.  Previous studies have attributed similar increases in the low 

temperature susceptibility in Eu3+ compounds to small amounts of Eu2+, which has strong 

Curie-like behavior at low temperatures.4.40  This explanation is unlikely in this case, 

however, as the synthetic conditions used to prepare these samples are not conducive to 

reducing Eu3+ to Eu2+.  Due to the non-Curie Weiss behavior of these analogues, their 

effective moments are reported as their χ•T values at 300 K of 2.827(χmT)1/2.  The two 

moments are consistent with those typically reported for Sm and Eu.4.41 

Luminescence  

The terbium, europium, and gadolinium analogues of the Na5RE4(OH)[SiO4]4 

structure luminesce in the visible region under UV excitation. The terbium and europium 

analogues both exhibit sharp and intense emission lines intrinsic to their respective 

element and emit bright green and red light, respectively, under UV excitation (Figure 

4.8 and 4.9). The gadolinium analogue, however, exhibits less intense luminescence, with 
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a violet emission (Figure 4.10). The color and relative intensity of the luminescence of 

each compound can be seen in Figure 4.11 where the strong luminescence of 

Na5Tb4(OH)[SiO4]4 and Na5Eu4(OH)[SiO4]4 is clearly visible, while the weaker 

luminescence of Na5Gd4(OH)[SiO4]4 is only weakly visible.   

In the emission spectrum for the Tb analogue, the peaks 482 nm, 537 nm, 578 nm, 

and 612 nm are likely caused by the 5D4 → 7F6, 5D4 → 7F5, 5D4 → 7F4, and 5D4 → 7D3 

transitions, respectively.  In the Eu analogue emission spectrum, the 584 nm peak is 

likely caused by the 5D0 → 7F1 transition while the 608 nm peak is likely caused by the 

5D0 → 7F2 transition.   The 5D0 → 7F2 transition is larger than the 5D0 → 7F1 transition 

which is expected due to the lack of an inversion center in the noncentrosymmetric 

Na5Eu4(OH)[SiO4]4.  Laporte forbidden transitions such as the J = 2 of the 5D0 → 7F2 

transition can occur in noncentrosymmetric compounds.   

Compared to other known luminescent silicates, the maximum Tb peak λ usually 

occurs within 22 nm, in the range 536 nm to 558 nm.  Our Tb analogue has its maximum 

emission peak at 542 nm.  In our Eu analogue, and those found in literature, the 

maximum Eu emission peak λ seems to be rather consistent at 608 nm and in Gd, the 

maximum visible peak λ can vary from a violet region 384 nm (this study) to a blue 

region, 491 nm, to a red emission such as 613 nm.	  4.11, 4.19, 4.23 

Fluorescence quantum yields were measured on polycrystalline samples of 

Na5RE4(OH)[SiO4]4 (RE = Eu, Gd, Tb).  To ensure accurate quantum yields, each 

analogue had three different samplings taken.  The quantum yield for each sampling was 

determined using the Fluoracle software.  The averaged quantum yields were determined 

to be 4.5(5) % for Eu, 1.9(7) % for Gd, and 20.8(1) % for Tb.  Quantum yields of 
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commercially available phosphors such as Y3Al5O12:Ce3+ (YAG:Ce) M2SiO4:Eu2+ (M = 

Ba2+, Sr2+, Ca2+) and M2Si5N8 (M = Ca2+, Sr2+, Ba2+) range from 75-79 % for the green 

silicate (Ba2SiO4:Eu2+) to 89 – 92 % for the red nitride (M2Si5N8 (M = Ba2+, Sr2+, Ca2+).	  

4.42  The quantum yield for the red (Eu) phosphor (4.6 %), while much lower than the 

yield of the commercial phosphor (89 – 92 %), is respectable.  Our green (Tb) phosphor 

has a quantum yield in excess of 20 %, which is encouraging, even though it did not 

reached the commercial range of 75 – 79 %.  Improvements via additional chemical 

substitutions into this system are likely and could enable this system to be competitive in 

the commercial phosphor market. 

A previous report indicates that Na5Gd4(OH)[SiO4]4 exhibits second harmonic 

generation (SHG).4.43 SHG measurements were performed on our samples and it was 

found that our samples either did not exhibit SHG, or the SHG was below the detection 

limit. 

Conclusion 

 Crystals of twelve oxyhydroxide compositions were grown using the low 

temperature hydroflux method.  Magnetic measurements on the terbium analogue reveal 

a downturn at T = 2.8 K indicating antiferromagnetic ordering at a TN below 2.8 K.  

There is no indication of long range magnetic ordering for any of the other compounds 

within the temperature ranged investigated.  Na5Eu4(OH)[SiO4]4, Na5Gd4(OH)[SiO4]4, 

and Na5Tb4(OH)[SiO4]4 are luminescent with the Eu and Tb analogues exhibiting intense 

visible luminescence.  Fluorescence quantum yield studies indicate that the quantum 

yields are 4.5(5) % (Eu), 1.9(7) % (Gd), and 20.8(1) % (Tb).  The fluorescence quantum 

yield result for the Tb analogue is very promising for future studies of this system.  
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Table 4.1. Crystallographic Data for Na5RE4(OH)[SiO4]4 (RE = Pr, Nd, Sm - Yb, and Y).  
 
Formula Na5Pr4(OH)[SiO4]4 Na5Nd4(OH)[SiO4]4 Na5Sm4(OH)[SiO4]4 Na5Eu4(OH)[SiO4]4 

Formula weight 1063.96 1077.28 1101.72 1108.16 

Crystal system Tetragonal Tetragonal Tetragonal Tetragonal  

Space group I -4 I -4 I -4 I -4 

a (Å) 12.0588(3) 11.9726(3) 11.8467(14) 11.7872(2) 

c (Å) 5.4668(2) 5.4824(2) 5.4846(13) 5.4813(2) 

V (Å3) 794.95(5) 785.86(5) 769.7(3) 761.56(4) 

Z 2 2 2  2  

Density (Mg/m3) 4.445 4.553 4.753 4.833 

Absorption coefficient (mm-1) 12.573 13.532 15.583 16.801 

Crystal size (mm3) 0.08 x 0.08 x 0.06 0.06 x 0.06 x 0.05 0.05 x 0.04 x 0.04 0.07 x 0.06 x 0.04 

2θmax (°) 36.276 36.293 36.255 36.322 

reflections collected 9092 12490 8856 11811 

independent reflections 1852 1888 1811 1849 

GOF (F2) 1.039 1.086 1.042 1.059 

R indices (all data) R1 = 0.0328 R1 = 0.0200 R1 = 0.0372 R1 = 0.0245 

 wR2 = 0.0679 wR2 = 0.0454 wR2 = 0.0602 wR2 = 0.0488 
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Table 4.1 (Continued). 
 
Formula Na5Gd4(OH)[SiO4]4 Na5Tb4(OH)[SiO4]4 Na5Dy4(OH)[SiO4]4 Na5Ho4(OH)[SiO4]4 

Formula weight 1129.52 1136.00 1150.32  1160.04 

Crystal system Tetragonal Tetragonal Tetragonal Tetragonal  

Space group I -4 I -4 I -4 I -4 

a (Å) 11.74272(3) 11.6845(7) 11.6435(3) 11.6002(3) 

c (Å) 5.4668(22) 5.4574(6) 5.4322(3) 5.4231(3) 

V (Å3) 753.83 745.09(12) 736.45(5) 729.76(5) 

Z 2 2 2 2  

Density (Mg/m3)  5.064 5.187 5.279 
Absorption 
coefficient (mm-1)  19.319 20.632  22.027 

Crystal size (mm3)  0.06 x 0.06 x 0.04 0.018 × 0.012 × 0.06  0.012 × 0.010 × 0.04  

2θmax (°) 120 38.57 36.29  36.38 

reflections collected  10635 8918 11389 
independent 
reflections  2112 1693 1734 

GOF (F2)  1.031 1.091  1.104 

R indices (all data)  R1 = 0.0334 R1 = 0.0278 R1 = 0.0254 

  wR2 = 0.0551 wR2 = 0.0589 wR2 = 0.0597 
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Table 4.1 (Continued). 
 
Formula Na5Er4(OH)[SiO4]4 Na5Tm4(OH)[SiO4]4 Na5Yb4(OH)[SiO4]4 Na5Y4(OH)[SiO4]4 

Formula weight 1169.36 1175.03 1192.48 855.96 

Crystal system Tetragonal Tetragonal Tetragonal Tetragonal  

Space group I -4 I -4 I -4 I -4 

a (Å) 11.5731(3) 11.5275(4) 11.5734(3) 11.6025(4) 

c (Å) 5.4107(2) 5.3951(4) 5.4067(3) 5.4264(5) 

V (Å3) 724.69(5) 716.92(7) 724.19(5) 730.49(8) 

Z 2 2 2 2 

Density (Mg/m3) 5.359 5.443 5.469 3.891 
Absorption 
coefficient (mm-1) 23.506 25.100 26.173 16.310 

Crystal size (mm3) 0.06 x 0.05 x 0.05 0.04 x 0.04 x 0.02 0.06 x 0.05 x 0.05 0.05 x 0.04 x 0.02 

2θmax (°) 36.281 36.344 36.323 32.812 

reflections collected 10726 10447 11352 8398 
independent 
reflections 1652 1735 1750 1365 

GOF (F2) 1.066 1.062 1.061 1.024 

R indices (all data) R1 = 0.0292 R1 = 0.0320 R1 = 0.0327 R1 = 0.0598 

 wR2 = 0.0660 wR2 = 0.0603 wR2 = 0.0710 wR2 = 0.1049 
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Table 4.2. Experimental magnetic moments (µeff) compared to calculated moments 
(µcalc). 
 

Compound Fit Range  
(K) TN (K) θ (K) µeff (mB/RE) µcalc (mB/RE ) 

Na5Pr4(OH)(SiO4)4 50-300 - -31.2 3.2a 3.58 
Na5Nd4(OH)(SiO4)4 100-300 - -52.4 3.74 3.62 
Na5Sm4(OH)(SiO4)4 300 - - 1.66b 1.74c 
Na5Eu4(OH)(SiO4)4 300 - - 3.79b 3.4c 
Na5Gd4(OH)(SiO4)4 50-300 - -1.8 7.91 7.94 
Na5Tb4(OH)(SiO4)4 50-300  < 2 -15.5 10.0a 9.72 
Na5Dy4(OH)(SiO4)4 50-300 - -5.6 10.75 10.65 
Na5Ho4(OH)(SiO4)4 50-300 - -8.2 10.68 10.61 
Na5Er4(OH)(SiO4)4 50-300 - -7.9 9.63 9.58 
Na5Tm4(OH)(SiO4)4 50-300 - -1.1 7.7a 7.56 

a) Effective moments likely have a large error due to the small masses of these samples (uncertainty in 
sample mass ~10 %) 
b) Effective moments approximated as 2.827(χmT)1/2 at 300 K due to non-Curie Weiss behavior 
c) µobs values reported due to the large difference between µobs and µcalc.  µobs values are from paramagnetic 
salts and are obtained from reference 4.39. 
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Figure 4.1. Crystals of Na5Tb4(OH)[SiO4]4, 

representative of all compositions. 
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Figure 4.2. a is a polyhedral representation of the unit cell of 
Na5Tb4(OH)[SiO4]4 and b is an extended polyhedral representation displaying 
the interconnectivity of the rare earth and silicon environments. The rare earth 
atoms are shown in orange, silicon tetrahedra in blue, Na(1) atoms in grey, 
Na(2) atoms in purple, and oxygen atoms shown in red. 
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Figure 4.3. The RE4O20OH unit in 
Na5Tb4(OH)[SiO4]4, which is representative of 
all of the title compounds, where the rare earth 
polyhedra are shown in orange, oxygen atoms 
shown in red, and the hydroxide molecule is 
shown in green	  
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Figure 4.4. Crystal structure of 
Na5Tb4(OH)[SiO4]4, which is representative of 
all of the title compounds.  The RE4O20OH units 
are shown as orange polyhedra and the silicon 
tetrahedra are shown in blue.  Oxygen, sodium, 
and hydroxide are omitted for clarity. 
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Figure 4.5. Crystal structure of Na5Tb4(OH)[SiO4]4, 
which is representative of all of the title compounds. 
The image on the top left indicates the Na(1) 
polyhedra, the image on the bottom left shows the 
Na(1) polyhedra stacking, and the image on the right 
shows the view of the Na(1) columns down the c 
axis.  The gray polyhedra represent Na(1), the purple 
spheres are Na(2), the blue spheres are silicon, and 
the orange spheres are the rare atoms.  Oxygen atoms 
are omitted for clarity.  
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Figure 4.6. Crystal structure of 
Na5Tb4(OH)[SiO4]4, which is representative of all 
of the title compounds. The positions of the Na(2) 
atoms (shown in purple) are shown with respect to 
the rare earth polyhedral units (shown in orange).  
Oxygen, Na(1), and silicon are omitted for clarity.	  
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Figure 4.7.  (a) and (b) show the inverse 
susceptibilities of Na5RE4(OH)(SiO4)4 (RE 
= Pr, Nd, Sm, Eu) and (RE = Gd, Tb, Dy, 
Ho, Er, Tm), respectively.  Figure 6 (c) 
shows the susceptibility data for Eu 
member. 
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Figure 4.8.  Room temperature luminescence 
spectra of Na5Tb4(OH)[SiO4]4. 
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Figure 4.9.  Room temperature luminescence 
spectra of Na5Eu4(OH)[SiO4]4.	  
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Figure 4.10.  Room temperature luminescence 
spectra of Na5Gd4(OH)[SiO4]4.	  
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Figure 4.11.  Side-by-side comparison of the room temperature 
luminescence of Na5Tb4(OH)[SiO4]4, Na5Gd4(OH)[SiO4]4, and 
Na5Eu4(OH)[SiO4].	  
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Chapter 5 

A5RE4X[TO4]4 Crystal Growth and Photoluminescence. Fluoride Flux Synthesis of 

Sodium and Potassium Rare Earth Silicate Oxyfluorides* 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

*Latshaw, A. M.; Wilkins, B. O.; Hughey, K. D.; Yeon, J.; Williams, D. E.; Tran, T. T.; 

Halasyamani, P. S.; zur Loye, H.-C. CrystEngComm. 2015, 17, 4654–

4661. 
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Introduction  

The field of solid-state lighting is constantly looking for better and cheaper 

materials that exhibit intense luminescence.  To create such materials it is necessary to 

pursue different modes of materials discovery and combine it with judicious fine-tuning 

of the materials’ composition and concomitant properties.  We have pursued materials 

discovery via crystal growth from high temperature fluxes where we focus on expanding 

the number of compositions that can be prepared given a new structure as a starting point.  

Flux crystal growth is a versatile synthetic method that has been used to grow 

crystals of many oxides, hydroxides, fluorides, and oxyfluorides.5.1  In particular, the use 

of a eutectic flux continues to be a promising field of exploration as it enables different 

temperatures and ratios of fluxes than have been previously been used. Eutectics also 

lower the melting point for the overall reaction, which can be helpful for reaction vessel 

consideration.  Alkali fluoride fluxes have been used to synthesize lanthanide containing 

silicate oxides5.2, 5.3 and oxyfluorides5.4-5.7 previously and the use of eutectic mixtures has 

allowed us to crystallize numerous new compositions, including rare earth containing 

compositions.   

 The latter represents a synthetic opportunity since once a new rare earth 

containing composition is isolated, many other compositions containing the remaining 

rare earths can typically be prepared.  If the structure is fairly rigid and the rare earth 

crystallographic position size limited, then one often observes a size limitation as to 

which rare earth cations fit.  If, on the other hand, the structure is fairly flexible and 

exhibits little restriction on the rare earth site, then it is often possible to incorporate all 

the rare earths (the one exception being radioactive promethium).  In this paper we report 
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on a series of compounds, Na5RE4F[SiO4]4 (RE = Pr, Nd, Sm-Tm) and K5Pr4F[SiO4]4, 

that were prepared following the discovery of the first composition, Na5Eu4F[SiO4]4.  In 

completing the series it became apparent that the gadolinium analogue is luminescent and 

that the terbium and europium analogues exhibit very intense luminescence.  The ability 

of this structure to exhibit such intense luminescence could lead to potential solid-state 

lighting applications in the future, especially because the framework of the structure is 

made up of silicon, a relatively inexpensive framework.  In addition, the presence of 

magnetic rare earth ions makes it of interest to study their magnetic properties.   

Herein we present the synthesis, structural characterization and physical property 

measurements of the Na5RE4F[SiO4]4 (RE = Pr, Nd, Sm-Tm) and K5Pr4F[SiO4]4 series of 

new silicates. 

Experimental Section 

Reagents   

Nd2O3 (99.9 %), Sm2O3 (99.9 %), Eu2O3 (99.9 %), Gd2O3 (99.9 %), Dy2O3 (99.9 

%), Ho2O3 (99.9 %), Er2O3 (99.9 %), and Tm2O3 (99.9 %) were purchased from Alfa 

Aesar.  Pr2O3 and Tb2O3 (Alfa Aesar) were reduced from Pr6O11 (99.9 %) and Tb4O7 

(99.9 %), respectively.  SiO2 (99.99 %) was purchased from Aldrich as fused pieces and 

ground to a powder in a ball mill.  NaF (99 % min.) and KF (99 % min.) were purchased 

from Alfa Aesar, and NaCl (ACS grade, 99.9 %) was purchased from Fisher Scientific.   

Synthesis  

Single crystals of Na5RE4F[SiO4]4 (RE = Pr, Nd, Sm-Tm) complexes were grown 

using a NaF/NaCl eutectic flux.  2 mmol of RE2O3, 2 mmol Na2CO3, and 4 mmol SiO2 

were loaded into a silver crucible.  2.81g of NaF and 1.95g of NaCl were loaded on top of 
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the reactants as a eutectic flux and a silver lid was loosely fitted on the crucible.  The 

crucible was then placed into a programmable furnace that was heated to 800 °C in 1.5 h, 

allowed to dwell there for 24 h and then slow cooled at a rate of 6 °C per hour to 600 °C, 

after which the furnace was shut off.  The flux was washed away using water, aided by 

sonication, and then the products were isolated by filtration.   

Single crystals of K5Pr4F[SiO4]4 were grown out of a molten potassium fluoride 

flux.  2 mmol of Pr2O3 and 4 mmol of SiO2 were loaded into a copper tube that was 

welded shut on the bottom.  5g of KF flux was loaded on top of the reactants and the tube 

was crimped shut.  The tube was loaded into a longer copper tube to contain any leaks 

and the long copper tube was placed into a quartz tube in a flow-through furnace under a 

stream of N2 gas.  The furnace was programmed to ramp to 1000 °C, dwell there for 24 h 

before slow cooling at a rate of 6 °C per hour to 800° C.  Once the furnace reached 800 

°C, it was shut off and allowed to cool to room temperature.  Crystals were isolated by 

sonication and vacuum filtration. 

 Polycrystalline samples of Na5RE4F[SiO4]4 (RE = Pr, Nd, Sm-Ho) were 

synthesized via a solid state route in order to prepare the larger quantities needed for 

property measurements since the crystals were too small to pick large quantities.  1 mmol 

RE2O3 (prefired at 1000 °C for 12 h), 1 mmol Na2SiO3, 1 mmol SiO2, and 0.5 mmol NaF 

(all ground and dried at 112 °C overnight before weighing) were ground for 30 min 

before being placed in a drying oven at 112 °C overnight.  After drying, the sample was 

pressed into a pellet.  The pellet was then loaded into a copper tube that was crimped at 

both ends to avoid the loss of fluoride.  The crimped tube was loaded into a flow-through 

furnace that was purged with N2 gas.  The reactions were then heated to 900 °C for 25-
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124 h, and reground up to 3 times, depending on the sample, until the desired product 

was the major phase with a minor phase of apatite (by powder X-ray diffraction).  The 

solid state syntheses were adjusted to maximize the amount of the desired phase.  

Numerous trial syntheses showed that shorter heating times yielded starting material and 

Na5RE4F[SiO4]4, while longer heating times led to a smaller weight percent of 

Na5RE4F[SiO4]4 and a larger weight percent of the respective rare earth containing apatite 

(Pr4.67(SiO4)3O,5.8 Na0.5Sm4.5(SiO4)3O,5.9 Eu9.34(SiO4)6O2,
5.6 

Na1.64Gd8.36(SiO4)6O0.72F1.28,
5.6 Tb4.67(SiO4)3O,5.9 Na0.5Dy4.5(SiO4)3O,5.9 and 

Na1.135Ho3.865(SiO4)3O0.36,
5.10). For that reason, reaction conditions were chosen to 

consume all starting materials while keeping the apatite impurity at a minimum.  

Ultimately, the flux and solid state methods and conditions we employed were unable to 

achieve phase pure polycrystalline samples. 

Single-Crystal X-ray Diffraction   

 X-ray intensity data using single crystals of all of the title compounds were 

collected at 294(2) K using a Bruker SMART APEX CCD diffractometer (Mo Kα 

radiation, λ = 0.71073 Å).5.11  The raw area detector data frames were reduced and 

corrected for absorption effects using the SAINT+ and SADABS programs.5.11  The 

initial structural model was obtained by direct methods using SHELXS.5.12, 5.13  

Subsequent difference Fourier calculations and full-matrix least-squares refinement 

against F2 were performed with SHELXL-2013/45.13 using the ShelXle interface.5.12 

 All compounds crystallize in the tetragonal system.  The pattern of systematic 

absences in the intensity data indicated only body-centering lattice symmetry, leaving the 

space groups I4, I-4, and I4/m.  The non-centrosymmetric space group I-4 (No. 82) was 
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found, by structure solution, to be correct.  The space group choice was checked using the 

ADDSYM program in PLATON, where no missed symmetry was found.5.14-5.17  The 

asymmetric unit cell contains four metal atom positions (one rare earth, one silicon, and 

two sodium or potassium atoms), four oxygen positions, and one fluorine position.  All 

atoms occupy positions of general crystallographic symmetry (Wyckoff position 8g) 

except atoms Na(2)/K(2) and O(5).  Na(2)/K(2) is located at position 4f on a two-fold 

axis of rotation and O(5) is located on position 2c with a -4 site symmetry.  Na(2)/K(2) 

was found to have a maximum chemical site occupancy of 0.5.  All atoms were refined 

with anisotropic displacement parameters. The site occupancies of the rare earth site and 

the Na(1)/K(1) site were found to be fully occupied.  Further details of the crystal 

structure investigation can be obtained from the Fachinformationszentrum Karlsruhe (e-

mail: crystdata@fiz-karlsruhe.de) on quoting the depository numbers CSD- 429315 (Tm), 

429316 (Er), 429317 (Ho), 429318 (Dy), 429319 (Gd), 429320 (Eu), 429321 (Sm), 

429322 (Nd), 429325 (Tb), 429323 (Na5Pr4F[SiO4]4), and 429324 (K5Pr4F[SiO4]4). 

Powder X-ray Diffraction 

 Powder X-ray diffraction (PXRD) data were collected on the polycrystalline 

samples of Na5RE4F[SiO4]4 (RE = Pr, Nd, Sm-Ho) using a Rigaku Dmax/2100 powder 

diffractometer using Cu Kα radiation.  Data for the compounds were collected using a 

step scan covering the 2θ range of 5 – 90 ° in steps of 0.04 °.  After PXRD data were 

collected, the cif file of the Na5RE4F[SiO4]4 phase and the PDF or cif file of the apatite 

phase (Pr4.67(SiO4)3O,5.8 Na0.5Sm4.5(SiO4)3O,5.9 Eu9.34(SiO4)6O2,
5.6 

Na1.64Gd8.36(SiO4)6O0.72F1.28,
5.6 Tb4.67(SiO4)3O,5.9 Na0.5Dy4.5(SiO4)3O,5.9 and 
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Na1.135Ho3.865(SiO4)3O0.36,
5.10 respectively) were overlaid (Figure 5.1).  Weight percent 

was then calculated using the JADE software package (Table 5.1).    

Photoluminescence Measurements 

 Room temperature emission and excitation spectra were collected on powders of 

the title compounds using a Perkin Elmer LS 55 fluorescence spectrometer.  Excitation 

and emission scans were performed in the 200 – 500 and 550 – 900 nm ranges, 

respectively.   

Fluorescence Quantum Yield Measurements 

Emission spectra were acquired on an Edinburgh FS5 fluorescence spectrometer. 

A 150 W Continuous Wave Xenon Lamp was used for sample excitation, and the 

emission measured using a Hamamatsu R928P photomultiplier tube.  For emission and 

excitation measurements, the polycrystalline powders were placed inside a 0.5 mm quartz 

sample holder using the SC-10 front-facing module.  The quantum yield measurements 

were acquired using the SC-30 integrating sphere module.  The standard Fluoracle 

software was used to measure and plot each spectrum, as well as calculate the quantum 

yield.   

Second-Harmonic Generation Measurements 

 Powder SHG measurements were performed on a modified Kurtz nonlinear-

optical (NLO) system using a pulsed Nd:YAG laser with a wavelength of 1064 nm. 

Unsieved powder samples were placed separately in capillary tubes and no index 

matching fluid was used in any of the experiments.  The SHG, i.e., the 532 nm light, was 

collected in reflection.  Comparisons with known SHG materials were made using 
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ground crystalline α-SiO2.  A detailed description of the equipment and methodology has 

been published elsewhere.5.18, 5.19 

Magnetic Property Measurements 

 The magnetic properties of the title compounds were measured using a Quantum 

Design Magnetic Property Measurement System (QD-MPMS3 SQUID VSM).  The zero-

field cooled magnetic susceptibility was measured as a function of temperature between 

2-300 K in an applied field of 1000 Oe. The measured magnetic data were corrected for 

shape and radial offset effects using the method reported by Morrison et. al.5.20  

Results and Discussion 

Structures 

Numerous silicates have been published in the literature, and in many cases there 

are common structural motifs.  Similar to the apatite (A5(BO4)3X) class of materials, 

where substitutions can be made on every site in the structure,5.6, 5.21, 5.22 the class of 

A5RE4X[TO4]4 compositions, to which the title compounds belong, is very extensive and, 

although compositionally quite varied, the compounds can be considered isostructural.  

The presence of unique O2-, F- and OH- anions or cations like Na+, K+, RE3+, Si4+, and 

Ge4+ on specific crystallographic sites is common and creates unique compositions.  In 

this case, the title compounds are isostructural with Na4.74Nd4.26(O0.52F0.48)[SiO4]4,
5.5 

Na5Nd4(OH)[SiO4]4,
5.23 Na5Y4F[SiO4]4,

5.24 K5La4F[SiO4]4,
5.7 Na5Nd4(OH)[GeO4]4,

5.25 

and Na5RE4(OH)[SiO4]4 (RE = Pr-Tm, Y),5.26 where differences arise from the presence 

or absence of O2-, F- and OH- on the F(1) X site, Na+ or K+ on the alkali A sites, and Si4+ 

or Ge4+ on the tetragen T site of this series.  The title compounds crystallize in the 

tetragonal space group I-4 and the crystallographic data are given in Table 5.2.  There are 
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two unique sodium or potassium sites, one unique rare earth site, and one unique silicon 

site.   

The eight coordinate rare earth cations arrange into RE4O20F units by sharing 

faces with the two adjacent polyhedra and by sharing a common apex (F(1) site) among 

the four rare earth polyhedra. These units form a layered arrangement consisting of two 

connected sheets.  Viewed down the b axis, it is apparent that the RE4O20F units are not 

connected to each other in the same sheet, but are connected to the adjacent sheet of 

RE4O20F units.  The arrangement is such that each RE4O20F is corner shared to four 

RE4O20F units in the sheet above and to four RE4O20F units in the sheet below.  The 

Na(1) and Na(2), or respective potassium atoms are located in the channels created by the 

RE4O20F units where the Na(1) or K(1) atoms are located in a square arrangement to 

occupy the four corners of the channels between four of the RE units (Figure 5.2a); the 

Na(2) or K(2) atoms are located directly under the F(1) site (Figure 5.2b).  The SiO4 

tetrahedra are corner and edge shared to the rare earth polyhedra and exhibit an average 

Si-O bond distance of 1.628 Å.  Selected bond distances are given in Table 5.3.  Bond 

valence sums were calculated for the RE, Si, and Na/K elements and were found to match 

the expected RE3+, Si4+, and Na+/K+ oxidation states with ranges of 2.81 – 3.17 v.u. for 

RE, 0.69 – 0.99 v.u. for the Na/K sites, and 4.10 – 4.16 v.u. for Si.5.27, 5.28  

Powder X-ray Diffraction 

 The calculated and experimental PXRD patterns for the polycrystalline solid state 

reactions of Na5RE4F[SiO4]4 (RE = Pr, Nd, Sm-Ho) are in good agreement.  The Nd 

sample contained a small quantity of an SiO2 impurity while the other rare earths 

contained 17.6 – 28.7 wt% of a known apatite phase that could not be physically 



www.manaraa.com

 
 

105 

separated from the Na5RE4F[SiO4]4 (RE = Pr, Nd, Sm-Ho) powders.  Powder X-ray 

diffraction patterns can be found in (Figure 5.1) and a table of the weight percent 

fractions are given in (Table 5.1). 

Photoluminescence 

 Fluorescence data were collected on polycrystalline powders of Na5RE4F[SiO4]4 

(RE = Eu, Gd, Tb). The room temperature data indicate intense emission peaks in the 

visible range for the terbium and europium analogues and intense emission in the ultra-

violet range for the gadolinium analogue. Since it is known that the apatite impurities are 

only very weakly luminescent,5.6 the intense luminescence originates with the title 

compounds.  The emission scans of the title compounds were collected using an 

excitation wavelength of 248 nm for Eu, 240 nm for Gd, and 234 nm for Tb and the 

excitation scans were collected at an emission wavelength of 608 nm for Eu, 604 nm for 

Gd, and 537 nm for Tb, Figures 5.3-5.5, respectively.  The maximum emission peaks in 

the Eu, Gd, and Tb spectra are consistent with the colors seen when exciting the samples 

under 365nm light as shown in Figure 5.6.  In the emission spectrum for the Eu 

analogue, the maxima doublet peaks at 584 nm and 609 nm are expected to be caused by 

5D0 → 7F1 transition in the Eu3+ ion while the peak at 690 nm is likely caused by the 5D0 

→ 7F2 transition.  The maxima peak (408 nm) in the Gd analogue is expected to be a 

result of the 6P7/2 → 8S7/2 transition in the Gd3+ ion.  Finally, the emission peaks for the 

Tb analogue are expected to be caused by the 5D4 → 7F6 (481 nm), 5D4 → 7F5 (537 nm), 

5D4 → 7F4 (578 nm), and 5D4 → 7D3 (613 nm) transitions, respectively.5.29   
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Fluorescence Quantum Yield 

 Fluorescence quantum yield was measured on polycrystalline samples of 

Na5RE4F[SiO4]4 (RE = Eu, Gd, Tb).  To determine a reliable quantum yield, data 

collections on three different samplings of each analogue were taken.  After collection, 

quantum yield on each data set was determined using Fluoracle, the vendor supplied 

software.  The averaged quantum yields were 5.0(1) % for Na5Eu4F[SiO4]4, 7.3(4) % for 

Na5Gd4F[SiO4]4, and 17.7(1) % for Na5Tb4F[SiO4]4.  These quantum yields are lower 

than what is found in commercially available phosphors such as Y3Al5O12:Ce3+ (YAG: 

Ce) M2SiO4:Eu2+ (M = Ba2+, Sr2+, Ca2+) and M2Si5N8 (M = Ca2+, Sr2+, Ba2+) where the 

green silicate (Ba2SiO4:Eu2+) has a quantum yield of 75 – 79 % compared to the Tb 

analogue presented here with a quantum yield of 17.7 %, and the red nitride (M2Si5N8 (M 

= Ba2+, Sr2+, Ca2+) has a quantum yield of 89 – 92 % compared to the Eu analogue 

presented here with a quantum yield of 5 %.5.30  These quantum yields, while lower than 

those in commercially available phosphors, are nonetheless very encouraging.  They are 

the first observation in these compositions that have not been optimized, suggesting that 

future improvements are likely and will be pursued in the future. 

Second-Harmonic Generation 

Na5RE4F[SiO4]4 (RE = Pr, Nd, Sm-Tm) and K5Pr4F[SiO4]4 crystallize in the space 

group I -4 (Crystal Class = I 4/m; Point group = -4).  The space group and crystal class 

indicate that the compound is non-centrosymmetric, and materials belonging to this 

crystal class can exhibit second-harmonic generation (SHG) and circular dichroism.5.31  

Interestingly, materials in this class are neither chiral nor polar.  Measurements 

demonstrate that all but the Nd compound of the Na5RE4F[SiO4]4 series exhibit SHG 
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behavior.  The Nd analogue may test negative for SHG behavior due to the dark color of 

the sample, which could cause it to absorb at either 1064 nm or 532 nm.  The other 

analogues are weakly SHG active, with the most intense being the Ho analogue, which 

exhibits an efficiency twice that of α-SiO2.   

Magnetism 

Rare earth containing silicates have not been studied extensively for their 

magnetic properties, and many of those investigated are paramagnetic down to 2 K.5.6, 5.32, 

5.33  Some examples, such as Dy2Si2O7 and Er2Si2O7,
5.34 Er2SiO7,

5.35 and 

Na5Tb4(OH)[SiO4]4
5.26 have exhibited antiferromagnetic behavior at low temperatures ~2 

K.  Interestingly, two of the compositions prepared by us, Na5Tb4F[SiO4]4 and 

Na5Dy4F[SiO4]4, order antiferromagnetically at low temperatures. 

The magnetic data of the Na5RE4F[SiO4]4 series can be found in Table 5.4 and 

Figure 5.7. At elevated temperatures, only the Sm and Eu analogues of the 

Na5RE4F[SiO4]4 compositions do not follow Curie-Weiss behavior.  The inverse 

susceptibilities were corrected to reflect the amount of RE3+ ion present in both the 

Na5RE4F[SiO4]4 and apatite secondary phase (Pr4.67(SiO4)3O,5.8 Na0.5Sm4.5(SiO4)3O,5.9 

Eu9.34(SiO4)6O2,
5.6 Na1.64Gd8.36(SiO4)6O0.72F1.28,

5.6 Tb4.67(SiO4)3O,5.9 

Na0.5Dy4.5(SiO4)3O,5.9 and Na1.135Ho3.865(SiO4)3O0.36,
5.10 respectively), the weight percent 

of which was determined by whole pattern fitting of the powder X-ray diffraction data.    

Since changes in the apatite structure, such as presence or absence of fluorine on 

the X site, does not cause noticeable shifts in the PXRD data but does alter the amount of 

lanthanide ion present per mol of apatite (which affects the magnetic moments), two 

different calculations were done for each analogue to determine the ranges of the 



www.manaraa.com

 
 

108 

magnetic moments.  With the elements present in these reactions, three compositions of 

apatite were possible based on apatite literature:6 RE9.34(SiO4)6, NaRE9(SiO4)6O2, and 

Na1.5RE8.5(SiO4)6OF.  To find the possible magnetic moment range of each sample, the 

lower (Na1.5RE8.5(SiO4)6OF) and upper (RE9.34(SiO4)6O2) limits of lanthanide 

concentration in apatites, with 8.5 and 9.34 mol RE per F.U., respectively, were used to 

calculate the ranges of the magnetic moments with a sample calculation shown in 

Example 5.1.  The high temperature region (50-300 K) of the inverse susceptibility data 

were fit to the Curie-Weiss law to yield effective moments.  In all cases, the range 

obtained from the two apatite compositions (Na1.5RE8.5(SiO4)6OF and RE9.34(SiO4)6O2)  

created an uncertainty of less than 1 % in the measured effective moment, and, for this 

reason the average effective moment is reported.  The effective moments are listed in 

Table 5.4, and are in good agreement with the calculated moments for RE3+ cations.   

 In the Tb and Dy analogues, Figure 5.8, a downturn in the susceptibilities is 

observed at T = 2.2 K and 2.4 K, respectively, which indicates the presence of 

antiferromagnetic ordering.  In the isostructural Na5RE4(OH)[SiO4]4 RE = Pr, Nd, Sm – 

Yb, Y  silicate family,5.26 only Tb was found to exhibit AF ordering, while in this study, 

Dy also exhibits AF ordering.  This could indicate that, as mentioned,5.26 the AF ordering 

may occur in all compositions, albeit below our low temperature limit of 2 K. 

 The Eu analogue (Figure 5.8) does not exhibit Curie-Weiss behavior, but instead 

exhibits Van Vleck paramagnetism.  Van Vleck paramagnetism is a form of 

paramagnetism that is independent of temperature and occurs in Eu(III) and Sm(III) 

samples below ~100 K.  As seen in the temperature dependence of the susceptibility data, 

below about 40 K the slope of the susceptibility has a drastic positive increase, unlike the 
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magnetism of the other rare earth elements.  Because of the Van Vleck paramagnetism, 

which is also observed in the Sm analogue, the effective moments of the Eu and Sm 

analogues are reported as the 2.827(χmT)1/2 values at 300 K.  The moments for both 

analogues agree with previously reported values.5.36 

Conclusion 

 Flux crystal growth yielded new compositions of Na5RE4F[SiO4]4 (RE = Pr, Nd, 

Sm-Tm) and K5Pr4F[SiO4]4.  Magnetic measurements on Na5RE4F[SiO4]4 (Tb, Dy) 

analogues show downturns at T = 2.2 K and 2.4 K, respectively, which indicates 

antiferromagnetic ordering at a TN below 2 K.  The Na5RE4F[SiO4]4 (RE = Nd, Pr, Sm-

Ho) were tested for SHG due to their non-centrosymmetric space group I-4 and RE = Pr, 

Sm-Ho were found to be weakly SHG active.  It is assumed that the Nd was not found to 

be SHG active due to its dark color.  Na5RE4F[SiO4]4 (RE = Eu, Gd, Tb) exhibit strong 

luminescence.  Fluorescence quantum yield measurements indicated yields of 5 – 17 % 

for the Eu, Gd, and Tb analogues.  These quantum yields imply doping studies could 

improve the fluorescence quantum yield, possibly to current commercial standards.  
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Table 5.1.  Weight percent of desired product to apatite or SiO2 for Na5RE4F[SiO4]4 (RE 

= Pr, Nd, Sm-Ho) based on PXRD data. 

 

 Weight Percent (%) 

Composition Na5RE4F[SiO4]4  Apatite SiO2 

Na5Pr4F[SiO4]4 71.2 28.7 - 

Na5Nd4F[SiO4]4 96.6 - 3.4 

Na5Sm4F[SiO4]4 82.2 17.8 - 

Na5Eu4F[SiO4]4 79.0 21.0 - 

Na5Gd4F[SiO4]4 79.4 20.6 - 

Na5Tb4F[SiO4]4 80.3 19.7 - 

Na5Dy4F[SiO4]4 79.5 20.5 - 

Na5Ho4F[SiO4]4 82.4 17.6 - 
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Table 5.2. Crystallographic data for Na5RE4F[SiO4]4 (RE = Pr, Nd, Sm-Tm) and K5Pr4F[SiO4]4. 

Formula Na5Pr4F[SiO4]4 Na5Nd4F[SiO4]4 Na5Sm4F[SiO4]4 Na5Eu4F[SiO4]4 

Formula weight 1065.95 1079.27 1103.71 1110.15 

Crystal system Tetragonal Tetragonal Tetragonal Tetragonal  

Space group I -4 I -4 I -4 I -4 

a (Å) 12.0109(2) 11.9435(2) 11.8246(2) 11.7718(3) 

c (Å) 5.4620(2) 5.45910(10) 5.44190(10) 5.4349(3) 

V (Å3) 787.96(3) 778.73(2) 760.89(2) 753.14(5) 

Z 2 2 2  2  

Density (g/cm3) 4.493 4.603 4.817 4.895 

Absorption coefficient  

(mm-1) 
12.689 13.661 15.769 16.993 

Crystal size (mm3) 0.12 × 0.06 × 0.06 0.16 × 0.12 × 0.08 0.12 × 0.12 × 0.12  0.05 × 0.05 × 0.03  

2θ range (°) 4.80 to 56.52 4.82 to 56.52 4.88 to 56.54  4.90 to 56.48  

reflections collected 5445 5339 5260  5226  

data/restraints/parameters 982 / 0 / 70 973 / 0 / 70 953 / 0 / 70 941 / 0 / 69  

R (int) 0.0197 0.0132 0.0164 0.0202 

GOF (F2) 1.106 1.125 1.085 1.100 

R indices (all data) 
R1 = 0.0121 R1 = 0.0097 R1 = 0.0115 R1 = 0.0177 

wR2 = 0.0325 wR2 = 0.0260 wR2 = 0.0296 wR2 = 0.0430 
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Table 5.2. (Continued) 

 

Formula Na5Gd4F[SiO4]4 Na5Tb4F[SiO4]4 Na5Dy4F[SiO4]4 Na5Ho4F[SiO4]4 

Formula weight 1131.31 1137.99  1152.31 1162.03 

Crystal system Tetragonal  Tetragonal  Tetragonal  Tetragonal  

Space group I -4 I -4 I -4 I -4 

a (Å) 11.7244(2) 11.6746(2)  11.6243(2)  11.5844(2) 

c (Å) 5.42960(10) 5.4113(2)  5.40420(10)  5.39570(10) 

V (Å3) 746.36(2) 737.54(3)  730.24(2)  724.09(2) 

Z 2 2 2  2 

Density (g/cm3) 5.034 5.124 5.241 5.330 

Absorption coefficient  

(mm-1) 
18.112 19.522  20.813  22.205 

Crystal size (mm3) 0.08 x 0.08 x 0.04 0.14 × 0.04 × 0.04  0.19 × 0.04 × 0.04  0.16 x 0.06 x 0.04 

2θ range (°) 4.92 to 56.52 4.94 to 56.52  4.96 to 56.50  4.98 to 56.60 

reflections collected 5116 5117 5025  4974 

data/restraints/parameters 925 / 0 / 69 923 / 0 / 70  909 / 0 / 70  908 / 0 / 70 

R (int) 0.0162 0.0209 0.0202 0.0186 

GOF (F2) 1.166 1.065  1.078  1.144 

R indices (all data) 
R1 = 0.0132 R1 = 0.0169 R1 = 0.0138 R1 = 0.0133 

wR2 = 0.0329 wR2 = 0.0422 wR2 = 0.0347 wR2 = 0.0348 
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Table 5.2. (Continued) 

 

Formula Na5Er4F[SiO4]4 Na5Tm4F[SiO4]4 K5Pr4F[SiO4]4 

Formula weight 1171.35 1178.04 1146.50 

Crystal system Tetragonal  Tetragonal  Tetragonal  

Space group I -4 I -4 I -4 

a (Å) 11.5410(2) 11.5094(2) 12.3745(2) 

c (Å) 5.3850(2) 5.37000(10) 5.5011(2) 

V (Å3) 717.25(3) 711.34(2) 842.37(4) 

Z 2 2 2 

Density (g/cm3) 5.424 5.500 4.520 

Absorption coefficient  

(mm-1) 
23.755 25.302 12.978 

Crystal size (mm3) 0.16 x 0.12 x 0.08 0.12 x 0.08 x 0.08 0.14 x 0.08 x 0.04 

2θ range (°) 5.00 to 56.52 5.00 to 56.56 4.66 to 56.56 

reflections collected 4916 4864 5796 

data/restraints/parameters 892 / 0 / 70 885 / 0 / 70 1052 / 0 / 70 

R (int) 0.0170 0.0187 0.0187 

GOF (F2) 1.133 1.159 1.128 

R indices (all data) 

 

R1 = 0.0124 R1 = 0.0128 R1 = 0.0101 

wR2 = 0.0323 wR2 = 0.0337 wR2 = 0.0253 
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Table 5.3.  RE-O Bond Distances (in Å) for Na5RE4F[SiO4]4 (RE = Pr, Nd, Sm-Tm) and K5Pr4F[SiO4]4. 

 
 Na5Pr4F[SiO4]4 Na5Nd4F[SiO4]4 Na5Sm4F[SiO4]4 Na5Eu4F[SiO4]4 Na5Gd4F[SiO4]4 Na5Tb4F[SiO4]4 

RE(1) – O(3) 2.264(5) 2.346(2) 2.317(3) 2.299(4) 2.307(3) 2.288(4) 

RE(1) – O(2) 2.318(5) 2.383(2) 2.362(3) 2.358(4) 2.339(3) 2.327(4) 

RE(1) – O(4) 2.358(5) 2.4183(19) 2.394(2) 2.379(4) 2.375(3) 2.369(4) 

RE(1) – O(2) 2.360(5) 2.432(2) 2.405(3) 2.397(4) 2.384(3) 2.372(4) 

RE(1) – O(3) 2.360(5) 2.426(2) 2.400(3) 2.388(4) 2.373(3) 2.357(4) 

RE(1) – O(1) 2.413(4) 2.4977(18) 2.470(2) 2.454(3) 2.442(3) 2.431(4) 

RE(1) – F(1) 2.5176(3) 2.61239(13) 2.57628(16) 2.5615(2) 2.54718(18) 2.5325(2) 

RE(1) – O(4) 2.538(5) 2.645(2) 2.599(3) 2.581(4) 2.562(3) 2.550(4) 

 Na5Dy4F[SiO4]4 Na5Ho4F[SiO4]4 Na5Er4F[SiO4]4 Na5Tm4F[SiO4]4 K5Pr4F[SiO4]4  

RE(1) – O(3) 2.278(3) 2.264(3) 2.255(3) 2.237(4) 2.416(2)  

RE(1) – O(2) 2.319(3) 2.316(3) 2.303(3) 2.297(3) 2.461(2)  

RE(1) – O(4) 2.361(3) 2.352(3) 2.351(3) 2.335(3) 2.5521(18)  

RE(1) – O(2) 2.361(3) 2.350(3) 2.334(3) 2.324(4) 2.479(2)  

RE(1) – O(3) 2.347(3) 2.336(3) 2.333(3) 2.319(4) 2.510(2)  

RE(1) – O(1) 2.423(3) 2.407(3) 2.401(3) 2.392(3) 2.4620(17)  

RE(1) – F(1) 2.51774(18) 2.50744(17) 2.49443(17) 2.48452(19) 2.70734(13)  

RE(1) – O(4) 2.528(3) 2.521(3) 2.506(3) 2.506(4) 2.616(2)  
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Table 5.4.  Experimental magnetic moments (μeff) compared to calculated moments 

(μcalc) for Na5RE4F[SiO4]4 (RE = Pr, Nd, Sm-Ho). 

 

Compound Fit Range (K) TN (K) θ (K) μeff (μB/RE) μcalc (μB/RE) 

Na5Pr4F[SiO4]4 100 - 300 - -35.4 3.5a 3.58 

Na5Nd4F[SiO4]4 100 - 300 - -43.4 3.71 3.62 

Na5Sm4F[SiO4]4 300 - - 1.7a 1.74b 

Na5Eu4F[SiO4]4 300 - - 3.3a 3.4b 

Na5Gd4F[SiO4]4 50 – 300 - -1.3 7.7a 7.94 

Na5Tb4F[SiO4]4 100 – 300  < 2 -7.5 9.7a 9.72 

Na5Dy4F[SiO4]4 100 – 300 < 2 -7.8 10.5a 10.65 

Na5Ho4F[SiO4]4 50 – 300 - -6.4 10.5a 10.61 
aμeff values are approximated based on apatite calculations. 
bμcalc values reported due to the large difference between μobs and μcalc.  μobs values36 are from 

paramagnetic salts. 
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Figure 5.1. PXRD patterns of Na5RE4F[SiO4]4 where RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, 

and Ho, respectively.  The cif file overlay of the Na5RE4F[SiO4]4 phases are shown in red 

and the impurity phases of Pr4.67(SiO4)3O,5.21 SiO2, Na0.5Sm4.5(SiO4)3O,5.22 

Eu9.34(SiO4)6O2,
5.6 Na1.64Gd8.36(SiO4)6O0.72F1.28,

5.6 Tb4.67(SiO4)3O,5.22 

Na0.5Dy4.5(SiO4)3O,5.22 and Na1.135Ho3.865(SiO4)3O,5.23 respectively, are shown in blue. 

f. 

. 

g. 

. 

h. 
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Figure 5.2.  Structural representation of Na5Eu4F[SiO4]4 where a shows the overall view 

down the c axis and b indicates the structure down the b axis. Na(1) or K(1) atoms are 

shown as purple spheres Na(2) or K(2) as gray spheres, RE polyhedra are shown in 

orange, silicon tetrahedra shown in blue, F shown in green, and oxygens are omitted for 

clarity. 
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Figure 5.3.  Fluorescence spectra for 

Na5Eu4F[SiO4]4 where the emission data was 

collected at an excitation wavelength of 248 nm 

and the excitation data was collected at an 

emission wavelength of 608 nm. 
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Figure 5.4.  Fluorescence spectra of 

Na5Gd4F[SiO4]4 where the emission data were 

collected at an excitation λ of 240 nm and the 

excitation data were collected at an emission λ of 

604 nm. 
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Figure 5.5.  Fluorescence spectra of 

Na5Tb4F[SiO4]4 where the emission data were 

collected at an excitation wavelength of 234 nm 

and the excitation data were collected at an 

emission wavelength of 537 nm. 
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Figure 5.6.  Image of room temperature emission under an excitation 

wavelength of 365 nm. 
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Figure 5.7. Inverse susceptibilities as a function 

of temperature of Na5RE4F[SiO4]4 (RE = Pr, Nd, 

Sm-Ho). 
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Figure 5.8.  Temperature dependence of the 

magnetic susceptibilities of Na5Dy4F[SiO4]4 and 

Na5Tb4F[SiO4]4 analogues (top), indicating the 

antiferromagnetic ordering at 2.4 K and 2.2 K, 

respectively and Na5Eu4F[SiO4]4 (bottom) to 

show the Van Vleck paramagnetism. 
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Example 5.1.  Example of how the magnetic moment was calculated. 

 

Mass of Ho sample: 0.03093g 

 

Weight % (from PXRD): 

Na5Ho4F[SiO4]4 = 82.4% 

Apatite = 17.6% 

 

Mass of each component: 

Na5Ho4F[SiO4]4 = 0.02549g 

Apatite = 0.0054g 

 

If apatite is Na1.5Ho8.5(SiO4)6OF (low RE concentration): 

mol calculations: 

 

0.0255 𝑔 𝑁𝑎5𝐻𝑜4𝐹[𝑆𝑖𝑂4]4 ∗
1 𝑚𝑜𝑙

1161.9 𝑔 𝑁𝑎5𝐻𝑜4𝐹[𝑆𝑖𝑂4]4

= 2.19𝐸−5 𝑚𝑜𝑙 𝑁𝑎5𝐻𝑜4𝐹[𝑆𝑖𝑂4]4 

 

0.0054 𝑔 𝑁𝑎1.5𝐻𝑜8.5(𝑆𝑖𝑂4)6𝑂𝐹 ∗
1 𝑚𝑜𝑙

2023.7 𝑔 𝑁𝑎1.5𝐻𝑜8.5(𝑆𝑖𝑂4)6𝑂𝐹
= 2.69𝐸−6 𝑚𝑜𝑙 𝑁𝑎1.5𝐻𝑜8.5(𝑆𝑖𝑂4)6𝑂𝐹 

 

mol RE calculations: 

2.19𝐸−5 𝑚𝑜𝑙 𝑁𝑎5𝐻𝑜4𝐹[𝑆𝑖𝑂4]4 ∗
4 𝑚𝑜𝑙 𝐻𝑜

1 𝑚𝑜𝑙 𝑁𝑎5𝐻𝑜4𝐹[𝑆𝑖𝑂4]4

= 8.76𝐸−5 𝑚𝑜𝑙 𝐻𝑜 

 

2.69𝐸−6 𝑚𝑜𝑙 𝑁𝑎1.5𝐻𝑜8.5(𝑆𝑖𝑂4)6𝑂𝐹 ∗
8.5 𝑚𝑜𝑙 𝐻𝑜

1 𝑚𝑜𝑙 𝑁𝑎1.5𝐻𝑜8.5(𝑆𝑖𝑂4)6𝑂𝐹
= 2.29𝐸−5 𝑚𝑜𝑙 𝐻𝑜 

 

Na5Ho4F[SiO4]4 and Na1.5Ho8.5(SiO4)6OF calculation: 

8.76𝐸−5 𝑚𝑜𝑙 𝐻𝑜 +  2.29𝐸−5 𝑚𝑜𝑙 𝐻𝑜 = 1.11𝐸−4 𝑚𝑜𝑙 𝐻𝑜 

 

Magnetic susceptibility and inverse susceptibility plot: 

 

 
Magnetic susceptibility (black) and inverse susceptibility 

(red) of the holmium sample when apatite is 

Na1.5Ho8.5(SiO4)6OF. 

 

Fitting the inverse susceptibility with the Curie Weiss law from 50-300 K gives an effective magnetic 

moment of 10.52 μB/Ho. 
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If apatite is Ho9.34(SiO4)6O2 (high RE concentration): 

mol calculations: 

0.0255 𝑔 𝑁𝑎5𝐻𝑜4𝐹[𝑆𝑖𝑂4]4 ∗
1 𝑚𝑜𝑙

1161.9 𝑔 𝑁𝑎5𝐻𝑜4𝐹[𝑆𝑖𝑂4]4

= 2.19𝐸−5 𝑚𝑜𝑙 𝑁𝑎5𝐻𝑜4𝐹[𝑆𝑖𝑂4]4 

 

0.0054 𝑔 𝐻𝑜9.34(𝑆𝑖𝑂4)6𝑂2 ∗
1 𝑚𝑜𝑙

2124.7 𝑔 𝐻𝑜9.34(𝑆𝑖𝑂4)6𝑂2

= 2.56𝐸−6 𝑚𝑜𝑙 𝐻𝑜9.34(𝑆𝑖𝑂4)6𝑂2 

 

mol RE calculations: 

2.19𝐸−5 𝑚𝑜𝑙 𝑁𝑎5𝐻𝑜4𝐹[𝑆𝑖𝑂4]4 ∗
4 𝑚𝑜𝑙 𝐻𝑜

1 𝑚𝑜𝑙 𝑁𝑎5𝐻𝑜4𝐹[𝑆𝑖𝑂4]4

= 8.76𝐸−5 𝑚𝑜𝑙 𝐻𝑜 

 

2.56𝐸−6 𝑚𝑜𝑙 𝐻𝑜9.34(𝑆𝑖𝑂4)6𝑂2 ∗
9.34 𝑚𝑜𝑙 𝐻𝑜

1 𝑚𝑜𝑙 𝐻𝑜9.34(𝑆𝑖𝑂4)6𝑂2

= 2.39𝐸−5 𝑚𝑜𝑙 𝐻𝑜 

 

Na5Ho4F[SiO4]4 and Ho9.34(SiO4)6O2 calculation: 

8.76𝐸−5 𝑚𝑜𝑙 𝐻𝑜 +  2.39𝐸−5 𝑚𝑜𝑙 𝐻𝑜 = 1.12𝐸−4 𝑚𝑜𝑙 𝐻𝑜 

 

Magnetic susceptibility and inverse susceptibility plot: 

 

 
Magnetic susceptibility (black) and inverse susceptibility 

(red) of the holmium sample when apatite is Ho9.34(SiO4)6O2. 

 

Fitting the inverse susceptibility with the Curie Weiss law from 50-300 K gives an effective magnetic 

moment of 10.48 μB/Ho. 
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Chapter 6 

A5RE4X[TO4]4 Crystal Growth.  Fluoride Flux Synthesis of Na5Ln4F[GeO4]4 (Ln = Pr, 

Nd), the First Quaternary Germanate Oxyfluorides* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Latshaw, A. M.; Wilkins, B. O.; Morrison, G.; Smith, M. D.; zur Loye, H.-C. J. Solid 

State Chem., 2016, 239, 200-203. 
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Introduction 

 Flux crystal growth is a versatile technique used for exploratory research,6.1 where 

typically the flux is a crucial part of the reaction.  Throughout the literature, the use of 

different fluxes or conditions has been observed to yield different products, highlighting 

the importance of choosing an appropriate flux.6.2, 6.3  Fluoride fluxes have been 

demonstrated to readily dissolve starting material oxides, including rare earth oxides, 

silicon dioxide, and germanium oxide.  Since it is known that rare earth silicate oxides 

and oxyfluorides have been grown out of alkali fluoride fluxes, these fluxes represent 

good choices when trying to grow new rare earth tetragen oxyfluorides.6.2, 6.4-6.8 

The previously reported silicon analogues of the title compounds, 

Na5RE4(OH)[SiO4]4 (RE = Pr, Nd, Sm, Eu, Tb-Yb, Y) and Na5RE4F[SiO4]4 (RE = Pr, 

Nd, Sm-Tm), were studied for their magnetic, luminescent, and SHG properties.6.4, 6.6  It 

was determined that in the oxyhydroxide analogues, the Tb analogue ordered 

antiferromagnetically, the Eu, Gd, and Tb members luminesce with fluorescence 

quantum yields from 2 – 21 %, and second harmonic generation (SHG) was not observed.  

In the oxyfluoride analogues, the Tb and Dy analogues were found to be 

antiferromagnetic, the Eu, Gd, and Tb members were found to be luminescent with 

fluorescence quantum yields from 5 – 17 %, and all but the Nd member were found to 

exhibit weak SHG.  It is unknown if changing the tetragen changes the properties, 

however, with magnetic ordering occurring below 3 K, weak SHG, and fluorescence 

quantum yields below 25 % seen for the silicate analogues, synthesizing the germanate 

analogues is clearly of interest. 
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 Various rare earth containing germanates have been found to exhibit magnetic 

properties, luminescence, and display ionic conductivity.6.9-6.13  And yet, in spite of these 

properties, rare earth containing germanates have been studied far less extensively than 

the other tetragen family of rare earth containing silicates.  In fact, Na5Pr4F[GeO4]4 and 

Na5Nd4F[GeO4]4 are the first quaternary germanium oxyfluorides that contain a rare earth 

element and either an alkali or alkaline earth element.  This work reports only the second 

example of a germanium analogue from the A5RE4X[TO4]4 (A = Na, K; RE = rare earth, 

X = F, OH; T = Si, Ge) family.  The A5RE4X[TO4]4 family crystallizes in the  

noncentrosymmetric tetragonal space group I-4.6.4-6.6, 6.14-6.17  

Experimental Section 

Synthesis 

 Crystals of Na5Ln4F[GeO4]4 (Ln = Pr, Nd) were grown via a sodium fluoride, 

sodium chloride eutectic flux growth.  Ln2O3 (1 mmol), where Pr2O3 was reduced from 

Pr6O11 (99.9 %; Alfa Aesar) and Nd2O3 (99.9 % Acros Organics) was used as received, 

Na2CO3 (1 mmol; ACS grade, Fisher Scientific), and GeO2 (2 mmol; 99.98 %, Alfa 

Aesar) were loaded into a silver crucible and a eutectic flux mixture of NaF (2.81 g; 99 % 

min, Alfa Aesar) and NaCl (1.93 g; ACS grade, Fisher Scientific) were loaded on top of 

the reactants.  The crucible was then loosely fitted with a silver lid and placed in a 

programmable furnace that was set to ramp to 800 °C where it dwelled for 24 h before 

being programmed to slow cool to 600 °C at a rate of 3 °C/h.  After reaching 600 °C, the 

furnace was shut off.  To isolate the crystals, the reactions were sonicated in water and 

the crystals were collected by vacuum filtration.  Na5Ln4F[GeO4]4 (Ln = Pr, Nd) was 

determined to be the major product by powder X-ray diffraction analysis, with a small 
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amount GeO2 ( > 5 %) found in Na5Pr4F[GeO4]4 and Nd2O3 (approx. 6 % by JADE 

software analysis) found in Na5Nd4F[GeO4]4. 

 Polycrystalline samples of Na5Ln4F[GeO4]4 (Ln = Pr, Nd) were prepared using a 

solid state method to obtain phase pure samples for magnetic measurements. 1 mmol of 

Pr2O3 (reduced from Pr6O11 and stored under a desiccator or Nd2O3 (prefired at 1000 °C 

for 12 h), 1 mmol Na2CO3 (ground and dried overnight at 100 °C), 0.5 mmol NaF 

(ground and dried overnight at 100 °C), and 2 mmol GeO2 (ground and dried overnight at 

100 °C) were weighed out and ground together for 30 minutes to promote intimate 

mixing.  The sample was then pressed into a pellet and loaded into a copper tube that was 

crimped at both ends to avoid fluoride loss.  The crimped copper tube was loaded into a 

flow-through furnace that was purged with N2 gas.  The reactions were then calcined at 

600 °C for 10 h before ramping to 900 °C and dwelling there for 24 h.  After 24 h at 900 

°C the furnace was shut off and allowed to reach room temperature.  The reactions were 

ground and characterized by powder X-ray diffraction and found to be phase pure.   

Single Crystal X-ray Diffraction 

 X-ray intensity data were collected on a colorless prismatic crystal of 

Na5Pr4F[GeO4]4 and a blue-purple plate crystal of Na5Nd4F[GeO4]4 at 300(2) and 293(2) 

K, respectively, using a Bruker D8 QUEST diffractometer equipped with a PHOTON 

100 CMOS area detector and an Incoatec microfocus source (Mo Kα radiation, λ = 

0.71073 Å),6.18 and a Bruker SMART APEX CCD diffractometer (Mo Kα radiation, λ = 

0.71073 Å), respectively.6.19  The data collections covered 100 % of reciprocal space to 

2θmax = 75.66 ° and 56.6 °, with Rint = 0.034 and 0.0425 after absorption corrections.  The 

raw area detector frames were reduced and corrected for absorption effects using the 
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SAINT+ and SADABS programs.6.19  Final unit cell parameters were determined by 

least-squares refinement of 9889 and 3488 reflections from each data set.  Difference 

Fourier calculations and full-matrix least squares refinement against F2 of the structural 

model were performed with SHELXL-2014/16.20 using OLEX2.6.21  Further details of the 

crystal structure investigation can be obtained from the Fachinformationszentrum 

Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax:+497247808666; e-mail: 

crystdata@fiz-karlsruhe.de) on quoting the depository numbers 431182 (Pr) and 430347 

(Nd). 

Magnetic Property Measurements 

 The magnetic properties of Na5Ln4F[GeO4]4 (Ln = Pr, Nd) were measured using a 

Quantum Design Magnetic Property Measurement System (QD-MPMS3 SQUID VSM).  

The zero-field cooled magnetic susceptibility was measured as a function of temperature 

between 2 and 300 K in an applied field of 1000 Oe.  Radial offset and shape corrections 

were performed using the method outlined by Morrison and zur Loye.6.22  

Results and Discussion 

Synthesis 

 An alkali fluoride/alkali chloride eutectic flux was used to grow crystals of 

Na5Ln4F[GeO4]4 (Ln = Pr, Nd).  The eutectic mixture of NaF and NaCl was chosen to 

lower the melting point of the NaF flux in order to perform the reaction in a silver instead 

of a platinum vessel.  By choosing the eutectic ratio of 33 % NaCl to 67 % NaF, which 

lowered the melting point of the flux from 996 °C (NaF) to 679 °C, the use of a reaction 

dwell temperature more than 100 °C above the melting point of the flux becomes feasible 

without coming close to the melting point of silver (962 °C). 
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 Overall, germanate compounds are more difficult to synthesize due to the relative 

lower reactivity of germanium when compared to silicon.  In this system, the identical 

conditions were used to grow Na5Ln4F[GeO4]4 (Ln = Pr, Nd) as were used to grow the 

Na5RE4F[SiO4]4 (RE = Pr, Nd, Sm – Tm) compounds.6.4  However, only in the case of Pr 

and Nd, was the desired phase obtained and even adaptations to the reaction did not result 

in the crystallization of any of the other rare earth analogues, while routinely yielding the 

known NaREGeO4 germanate analogues.6.12, 6.23 

Structure 

Na5Ln4F[GeO4]4 (Ln = Pr, Nd) crystallizes in the tetragonal space group I-4, with 

the same structure as the other reported A5RE4X[TO4]4 (A = Na, K; RE = rare earth, X = 

F, OH; T = Si, Ge).6.4-6.6, 6.14-6.17  The Na5Ln4F[GeO4]4 structure contains one unique 

lanthanide site, one unique germanium site, two unique sodium sites, one unique fluorine 

site, and four unique oxygen sites.  The lanthanide site is eight coordinate with seven 

bonds to oxygen and one bond to fluorine.  Each lanthanide polyhedron is face shared to 

two other lanthanide polyhedra.  In total, four lanthanide polyhedra share the fluorine 

site, thereby creating the Ln4O20F unit shown in Figure 6.1.  These lanthanide units stack 

down the c axis where down the column each Ln unit is connected through corner and 

edge sharing to GeO4 tetrahedra as shown in Figure 6.2.  Adjacent columns of Ln units 

are connected through edge sharing of Ln polyhedra and edge and corner sharing of Ln 

units with GeO4 tetrahedra (Figure 6.2).  The Na(1) atoms sit in line with the fluorine 

atoms down the c axis and fill the channels between the Ln units as shown in Figure 6.3.  

Four Na(2) atoms sit in the channels between the Ln columns down the c axis (Figure 

6.3).  The overall structure down the c axis is shown in Figure 6.3 with crystallographic 
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data presented in Table 6.1 and Ln – O and Ge – O interatomic distances presented in 

Table 6.2.   

Magnetism 

 In the A5RE4X[TO4]4 family, where A = Na, K; RE = Pr, Nd, Sm-Yb, Y; X = F, 

OH; and T = Si or Ge, reports of magnetism are solely focused on the A = Na and T = Si 

compounds.  Here, we report the first magnetic property measurements of the family 

when T = Ge and the first magnetic property measurements ever reported on quaternary 

germanate oxyfluorides.  In the previous magnetic studies when T = Si, it has been seen 

that unless the rare earth is small, like terbium or dysprosium, the resulting magnetism is 

paramagnetic.  In the germanates this appears to be the case as well.  Down to 2 K, 

Na5Ln4F[GeO4]4 (Ln = Pr, Nd) are both strictly paramagnetic with the magnetic data 

summarized in Table 6.3 and the magnetic susceptibilities and inverse susceptibilities are 

shown in Figure 6.4.  For both analogues, the inverse susceptibility was fit over the range 

of 100 – 300 K.  The effective moments are 3.6 μB (Pr) and 3.67 μB (Nd) which compare 

well with the expected moments of 3.56 μB (Pr) and 3.3 – 3.7 μB (Nd). 

Conclusion   

 Na5Ln4F[GeO4]4 (Ln = Pr, Nd) crystals were grown using a sodium fluoride, 

sodium chloride eutectic flux.  Both compositions crystallize in the tetragonal space 

group I-4 like previously reported analogues.  The compounds represent the second 

germanium analogues of this family reported and are the first germanium oxyfluoride 

analogues.  Germanate oxides and oxyfluorides are not found often in literature due to the 

difficulty encountered when trying to synthesize gemanates.  These new compounds may 

indicate new pathways to synthesize future germanate compounds.  Other members of 
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this germanate oxyfluoride family could have the potential to exhibit SHG or interesting 

magnetic properties. 
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Table 6.1. Crystallographic table for single crystal X-ray data for Na5Ln4F[GeO4]4 (Ln = 

Pr, Nd). 

 

Formula Na5Pr4F[GeO4]4 Na5Nd4F[GeO4]4 

Formula weight (g/mol) 1243.95 1257.27 

Temperature (K) 300(2) 293(2) 

Crystal system Tetragonal Tetragonal 

Space group I-4 I-4 

a (Å) 12.1173(4) 12.0642(17) 

c (Å) 5.6795(2) 5.6674(11) 

V (Å3) 833.92(6) 824.9(3) 

Z 2 2 

Density (Mg/m3) 4.954 5.062 

Absorption coefficient 

(mm-1) 
18.772 19.754 

Crystal size (mm) 0.10 x 0.04 x 0.03 0.14 x 0.04 x 0.04 

2 theta range (°) 4.75 to 75.66 4.78 to 56.60 

reflections collected 24672 3488 

data/restraints/parameters 2244 / 0 / 32 1005 / 0 / 70 

R (int) 0.0339 0.0425 

GOF (F2) 1.064 1.105 

R indices (all data) 
R1 = 0.0128 R1 = 0.0212 

wR2 = 0.0209 wR2 = 0.0561 
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Table 6.2. Ln – O and Ge – O bond distances (in Å). 

 

 Na5Pr4F[GeO4]4 Na5Nd4F[GeO4]4 

Ln(1) – O(4) 2.4700(17) 2.320(9) 

Ln(1) – O(1) 2.3403(19) 2.416(8) 

Ln(1) – O(4) 2.4086(17) 2.431(9) 

Ln(1) – O(1) 2.4415(19) 2.441(9) 

Ln(1) – O(3) 2.6210(17) 2.451(8) 

Ln(1) – O(2) 2.5566(16) 2.533(7) 

Ln(1) – O(3) 2.4528(17) 2.604(8) 

Ln(1) – F(1) 2.61981(14) 2.6037(6) 

Ge(1) – O(1) 1.7479(18) 1.726(9) 

Ge(1) – O(2) 1.7470(16) 1.740(7) 

Ge(1) – O(4) 1.7391(17) 1.754(9) 

Ge(1) – O(3) 1.7695(16) 1.773(8) 
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Table 6.3. Experimental magnetic moments (μeff) compared to calculated moments (μcalc) 

for Na5Ln4F[GeO4]4 (Ln = Pr, Nd). 

 

Compound Fit Range (K) θ (K) μeff (μB/RE) μcalc (μB/RE) 

Na5Pr4F[GeO4]4 100 – 300 -32.81 3.61 3.56 

Na5Nd4F[GeO4]4 100 – 300 -36.59 3.67 3.3-3.7 
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Figure 6.1.  Na5Nd4F[GeO4]4, representative of 

both compositions, showing the Ln4O20F units 

formed through the face sharing of the Ln 

polyhedra where Ln is shown in orange, oxygen 

in red, and fluorine in green. 
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Figure 6.2.  Representation of how the Ln unit 

columns are connected by corner and edge sharing 

Ge and how the adjacent columns are connected 

by Ge and Ln edge and corner sharing.  Ln is 

shown in orange, Ge is shown in blue, oxygen is 

shown in red, and fluorine is shown in green. 
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Figure 6.3.  Overall representation of 

Na5Ln4F[GeO4]4 down the c axis where the 

sodium atoms can be seen in purple while the 

other colors follow the scheme described in Figure 

6.2. 
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Figure 6.4. Magnetic susceptibility and inverse magnetic 

susceptibility data of Na5Pr4F[GeO4]4 (top) and Na5Nd4F[GeO4]4 

(bottom). 
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Chapter 7 

Influence of Rare Earth Cation size on the Crystal Structure in Rare Earth Silicates, 

Na2RESiO4(OH) (RE = Sc, Yb) and NaRESiO4 (RE = La, Yb)* 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
*Latshaw, A. M., Wilkins, B. O., Chance, W. M., Smith, M. D., zur Loye, H.-C. Solid 

State Sci., 2016, 51, 59-65.
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Introduction 

Silicates are an expansive class of extended structures that are based on linked 

SiO4 tetrahedral building blocks and that encompass many diverse compositions7.1-7.6 

including numerous examples of complex rare earth containing silicate structures.  The 

presence of rare earth elements in the silicate structure can lead to interesting optical7.5, 

7.7-7.10 and magnetic7.4, 7.11-7.14 properties.  Furthermore, a unique feature of the rare earth 

silicates is the existence of a series of structural analogs and, at times, new structure types 

when a rare earth cation size limit is reached above or below the point at which a given 

structure ceases to form.  Identifying such structural limits and exploring all the diverse 

structures that form for the rare earth group can lead to improved understanding of the 

overall crystal chemistry of silicates.  While each case is unique, one can state that, in 

general, the rigidity of the crystal structure controls the size range of lanthanides that can 

be incorporated.  Some structures, such as Na5RE4X[SiO4]4 (RE = Pr, Nd, Sm-Yb, Y; X 

= F, OH), are not very rigid and their rare earth coordination environment site is capable 

of accommodating a wide range of rare earths extending in size from 0.985 Å (Yb) to 

1.126 Å (Pr).7.13, 7.15, 7.16  Other silicate structures that have a more rigid framework 

structure are often limited to only a small sub-set of rare earths and the structure tends to 

change when the next sized rare earth falls outside the size range that can be 

accommodated.  Often, this results in a new composition at the same time.  

The synthesis of new silicates can be accomplished by a number of methods, 

including solid-state reactions to obtain polycrystalline samples and solution based routes 

to obtain single crystals.  For the latter case fluoride containing fluxes have been shown 

to be very effective means of dissolving SiO2 as well as rare earth oxides to produce rare 
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earth containing compositions.7.12, 7.17, 7.18  When using fluoride-containing fluxes with 

rare earths and silica, products are usually rare earth silicate oxides or oxyfluorides.  For 

the particular system discussed in this paper, the large and small rare earths tend to form 

oxides, while the middle-sized rare earths tend to form oxyfluorides.   

The hydroflux method is another approach to create single crystals, albeit one that 

operates in a much lower temperature regime.  This new technique encompasses the best 

of many crystal growth techniques.  By operating at a low temperature (180 °C – 240 

°C)7.13, 7.15, 7.19-7.24 and a low pressure, this technique allows for the preparation of 

materials that are stable only at low temperatures and that could not be obtained via the 

more traditional high temperature flux growth.7.17  In addition, this method does not have 

the high pressure concerns found in traditional hydrothermal growth methods.  The 

hydroflux occupies a place in the compositional regime that is between a wet flux and an 

aqueous solution, where its acid base properties are controlled by the Lux-Flood concept 

of oxo-acidity7.25, 7.26 and where unique compositions can be isolated as single crystals. 

Herein we present the use of both the hydroflux method and the fluoride flux 

crystal growth approach for the synthesis of new complex rare earth silicates, NaLaSiO4, 

NaYbSiO4, Na2YbSiO4(OH), and Na2ScSiO4(OH), and discuss the effect of both the 

crystal growth temperature/method and the rare earth cation size on the structures that are 

obtained.  
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Experimental Section 

Sample preparation 

Materials preparation 

 Sc2O3 (>99 %) was purchased from Aran Isles Chemical Inc., Yb2O3 and La2O3 

(99.9 %) were purchased from Alfa Aesar, NaOH (ACS grade) was purchased from 

Fisher Scientific, Na2SiO3�9H2O (99+ %) was purchased from EM Science, NaF (99 % 

min.) was purchased from Alfa Aesar, and NaCl (99.9 %) was purchased from Fisher 

Scientific.  SiO2 (99.99 %) was purchased from Aldrich as fused pieces and ground to a 

powder in a ball mill. 

Single crystals 

Na2RESiO4(OH) (RE = Sc, Yb) 

 Crystals of Na2ScSiO4(OH) and Na2YbSiO4(OH) were grown in 23 mL 

polytetrafluoroethylene (PTFE)-lined stainless steel autoclaves by utilizing an NaOH 

hydroflux.  For Na2ScSiO4(OH), Na2SiO3•9H2O (1.91 mmol), Sc2O3 (1.03 mmol), NaOH 

(9.68 g), and deionized water (8.5 g) were loaded into a PTFE liner that was placed into a 

steel autoclave before being placed into a programmable oven that was ramped at 5 

°C/min to 230 °C and held for 48 h before slow cooling to 80 °C at a rate of 0.1 °C/min. 

After reaching 80 °C, the oven was shut off.  For Na2YbSiO4(OH), Na2SiO3•9H2O (1.86 

mmol), Yb2O3 (0.975 mmol), NaOH (9.24 g), deionized water (8.17 g), and WO3 (1.1 

mmol), which acted as a mineralizer, were added to a PTFE liner that was loaded into a 

steel autoclave that was placed into a programmable oven that was ramped at a rate of 5 

°C/min. to 230 °C, where it dwelled for 48 h.  After the dwelling period, the reaction was 

quenched by removing it from the oven between 200 – 230 °C.  If the reaction was pulled 
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out after the flux had cooled below 200 °C, an impurity of YbO(OH) was consistently 

observed.  Reactions quenched between 200 – 230 °C yielded phase pure crystals, albeit 

twinned, with no difference observed between different quenching temperatures above 

200 °C. The crystals from these reactions were gently scraped from the inside of the 

PTFE liners and sonicated in methanol to remove the flux before being collected via 

vacuum filtration and then dried.   

NaRESiO4 (RE = La, Yb) 

 Crystals of NaLaSiO4 were synthesized by loading La2O3 (1 mmol), Na2CO3 (1 

mmol), and SiO2 (2 mmol) into a silver crucible.  The eutectic flux of NaF (1.41 g) and 

NaCl (0.96 g) was placed on top of the reactants.  The crucible was then loosely fitted 

with a silver lid and placed into a programmable furnace that was programmed to ramp in 

1.5 h to 900 °C where it dwelled for 48 h before slow cooling to 650 °C at a rate of 3 

°C/h before the furnace was shut off.  The flux was washed away by sonication in water 

to yield crystals of NaLaSiO4. 

 Crystals of NaYbSiO4 were synthesized by loading Yb2O3 (2 mmol), Na2CO3 (2 

mmol), and SiO2 (4 mmol) into a silver crucible.  The eutectic flux of NaF (2.80 g) and 

NaCl (1.93 g) was added on top of the reactants.  The crucible was loosely fitted with a 

silver lid and placed into a programmable furnace that was programmed to ramp in 1.5 h 

to 800 °C where it dwelled for 24 h before slow cooling to 600 °C at a rate of 6 °C/h.  

After reaching 600 °C, the furnace was shut off.  Crystals were isolated by sonication in 

water to wash away the flux. The NaYbSiO4 phase was the major product, with a minor 

amount of a second new ytterbium containing composition, Na3YbSi2O7. 
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Characterization 

Single Crystal X-ray Diffraction 

 Structure determinations were performed using single crystal X-ray intensity data 

from a colorless needle crystal [Na2YbSiO4(OH)], a colorless octahedral crystal 

[Na2ScSiO4(OH)], a colorless needle crystal [NaLaSiO4], and a colorless rectangular 

block crystal [NaYbSiO4].  The X-ray data of Na2YbSiO4(OH), Na2ScSiO4(OH), and 

NaYbSiO4 were collected using a Bruker SMART APEX diffractometer (Mo Kα 

radiation, λ = 0.71073 Å)7.27 and the X-ray data from NaLaSiO4 were collected using a 

Bruker D8 QUEST diffractometer equipped with a PHOTON 100 CMOS area detector 

and an Incoatec microfocus source (Mo Kα radiation, λ = 0.71073 Å).7.28  The raw area 

detector data frames were reduced and corrected for absorption effects using the SAINT+ 

and SADABS programs.7.27 Final unit cell parameters were determined by least-squares 

refinement of large sets of reflections from the data sets. The initial structural models 

were obtained by direct methods using SHELXS.7.29 Subsequent difference Fourier 

calculations and full-matrix least-squares refinement against F2 were performed with 

SHELXL-2013/47.29 using the ShelXle interface.  The final structural models were 

checked for missed symmetry elements using the ADDSYM program in PLATON,7.30-7.33 

which found no missed symmetry in any case.  

 NaLaSiO4 crystallizes in the orthorhombic system.  The space groups Pna21 and 

Pnma were consistent with the pattern of systematic absences in the intensity data.  The 

acentric group Pna21 was eventually determined to be correct by structure solution.  

NaYbSiO4 also crystallizes in the orthorhombic system.  The space groups Pnma and 

Pna21 were consistent with the pattern of systematic absences in the intensity data.  The 
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centrosymmetric group Pnma was confirmed by structure solution.  For Na2RESiO4(OH), 

the compounds crystallize in the polar space group Pca21 as determined by the pattern of 

systematic absences in the intensity data and by structure solution. 

For Na2RESiO4(OH) the two unique hydrogen (hydroxyl) atoms necessary for 

crystal electroneutrality could not be reliably located or refined. They are presumably 

bonded to the two unique non-silicate oxygen atoms O9 and O10. Small residual electron 

density peaks were observed near the two oxygens, but did not give acceptable positional 

or displacement parameters, even with restraints applied. A soft restraint (SHELX ISOR 

instruction) was applied to the displacement parameters of one oxygen atom (O3) to 

prevent an oblate ellipsoid shape. The reason for this is not clear, but may be due to 

minor positional disorder of the silicate group [Si1/O1-O4] around the Si1-O4 bond, as 

the displacement ellipsoids for O1 and O2 are also slightly oblate. The absolute structure 

(Flack) parameter near convergence for the Na2YbSiO4(OH), Na2ScSiO4(OH), and 

NaLaSiO4 compounds refined to 0.41(2), 0.49(10), and 0.50(2) respectively, indicating 

the data crystals are two-component inversion twins. An inversion twin law was included 

in the final refinement cycles.  Further details of the crystal structure investigation can be 

obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-

Leopoldshafen, Germany (fax:+497247808666; e-mail: crystdata@fiz-karlsruhe.de) on 

quoting the depository numbers 430196 (NaLaSiO4), 430197 (NaYbSiO4), 430198 

(Na2ScSiO4(OH)), and 430199 (Na2YbSiO4(OH)). 

Magnetic Property Measurements 

 The DC magnetic susceptibilities of Na2YbSiO4(OH) and NaYbSiO4 were 

measured as a function of temperature using a Quantum Design MPMS 3 SQUID 
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Magnetometer.  82.39 mg of a ground polycrystalline powder of Na2YbSiO4(OH) and 

52.70 mg of a mixed ground polycrystalline powder of NaYbSiO4 and Na3YbSi2O7, the 

second new ytterbium containing composition mentioned earlier, were massed on a 

balance sensitive to 0.01 mg and loaded into a gelatin capsule for data collection.  Zero-

field-cooled conditions from 2 – 300 K in an applied field of 1000 Oe were used to 

measure the temperature dependent susceptibilities of the samples.  The raw magnetic 

moments were corrected for sample shape and radial offset effects using the method 

outlined by Morrison and zur Loye.7.34 

Results and Discussion 

Structure Description 

Na2RESiO4(OH) (RE = Sc, Yb) 

 Na2ScSiO4(OH) and Na2YbSiO4(OH) crystallize in a new structure type in the 

orthorhombic space group Pca21.  Within the structure are two unique silicon 

environments, two unique rare earth environments, four sodium environments, and ten 

oxygen environments.  Both silicon environments result in isolated SiO4 units that are 

corner shared to two RE(1) and to two RE(2) octahedra.  Both rare earth environments 

consist of REO6 octahedra that corner share to two Si(1) tetrahedra, two Si(2) tetrahedra, 

and to two of the other rare earth octahedra (Figure 7.1).  The oxygen sites O(9) and 

O(10), which make up the corner-shared sites of the RE octahedra, are presumed to be 

the location of the hydroxyl groups.  Na(1), Na(2), Na(3), and Na(4) sit in the channels 

between O(1), O(7), O(3), and O(6), respectively, where O(1) corner shares Si(1) and 

RE(2) polyhedra, O(7) corner shares Si(2) and RE(1) polyhedra, O(3) corner shares Si(1) 

and RE(2), and O(6) corner shares Si(2) and RE(1).  The overall structural representation 
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is shown in Figure 7.2, relevant crystallographic information is listed in Table 7.1, and 

rare earth – oxygen interatomic distances are collected in Table 7.2. 

NaYbSiO4  

 NaYbSiO4 crystallizes in the orthorhombic space group Pnma in a structure type 

that is similar to one observed for the many other compositional analogs of this structure 

type, such as germanates.  Known NaRETO4 (RE = rare earth, T = tetragen) examples 

include NaREGeO4 (RE = Sm-Tb, Ho-Lu)7.35-7.37 and NaRESiO4 (RE = La7.38, Nd7.39, 

Sm7.40, Gd7.41, 7.42, Ho7.39, Er7.39, Lu7.39, 7.43, Y7.44, 7.45), where the germanate examples 

crystallize in the orthorhombic space group Pnma, while the silicon examples are 

reported to crystallize in the orthorhombic space groups Pmcn (La), Pna21 (Nd), Pmnb 

(Gd7.42), Pbn21 (Er, Lu7.39, Y7.44), Pc21n (Y7.45), and Pnma (Lu7.43), and in the tetragonal 

space group I4/m (Sm, Gd7.41, Ho) .  Since Pmcn and Pmnb are non-standard settings of 

Pnma, NaLaSiO4, NaGdSiO4, and a polymorph of NaLuSiO4 crystallize in the same 

space group as the reported NaYbSiO4. 

 NaYbSiO4 crystallizes in the space group Pnma in the olivine structure type.  As 

expected, it is isostructural with the known germanates.  The structure contains one 

unique sodium, one unique silicon, one unique ytterbium, and three unique oxygen 

environments.  The Yb atoms are located in a distorted YbO6 octahedra that corner shares 

with other YbO6 octahedra and corner and edge share to SiO4 tetrahedra (Figure 7.3). 

The SiO4 tetrahedra are isolated from each other and contribute to the overall structure 

only via corner and edge sharing with YbO6 octahedra, which transforms the two-

dimensional sheets of the Yb polyhedra along the a axis to a three-dimensional structure 

(Figure 7.4) while the sodium atoms fill the channels between the ytterbium and silicon 
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polyhedra as shown in Figure 7.5.  Figure 7.4 shows the overall structure down the c 

axis. The relevant crystallographic information is listed in Table 7.1, and ytterbium – 

oxygen interatomic distances are collected in Table 7.3.  

NaLaSiO4 

 NaLaSiO4 crystallizes in the space group Pna21, which is similar to the previously 

reported NaNdSiO4, NaErSiO4, and a polymorph of NaLuSiO4 where the Er and Lu 

analogues are reported in the space group Pbn21, which is a non-standard setting of the 

space group Pna21.7.39  In this structure there are three unique lanthanum sites, three 

unique silicon sites, three unique sodium sites, and twelve unique oxygen sites.  All three 

La sites are 8 CN where all are edge and corner shared to isolated SiO4 units, and all are 

corner and face shared with other La polyhedra.  The La polyhedra form face shared 

columns down the a axis where the columns corner share with each other, making it look 

as though the columns are overlapped when looking down the c axis (Figure 7.6).  The Si 

form isolated SiO4 units and the sodium atoms fill the channels in the structure where the 

Na(1) atoms sit in line with the Si(3) atoms down the a axis, the Na(2) atoms sit in line 

with the Si(2) atoms down the a axis, and the Na(3) atoms sit in line with the Si(1) atoms 

down the a axis.  The relevant crystallographic information is listed in Table 7.1, and 

lanthanum – oxygen interatomic distances are collected in Table 7.4.  Overall structural 

views down the a and c axis are shown in Figures 7.7 and 7.8, respectively.    

 Figure 7.9 depicts the range of synthetic conditions under which the different 

complex rare earth silicates can be synthesized.  From the figure it is clear that both 

temperature and rare earth cation size play important roles in determining the structure 

that forms.  It is interesting to note that for the middle range of rare earth cation radii, the 
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Na5RE4X[SiO4]4 structure type forms, as the oxyfluoride when crystallized out of high 

temperature fluoride fluxes and as the oxyhydroxide when crystallized out of a low 

temperature hydroflux.  Furthermore, the Na5RE4X[SiO4]4 structures are bracketed by 

four other structure types for larger and for smaller rare earth cations: Na2RESiO4(OH) 

and NaLaSiO4 for larger cations at low and high synthesis temperatures, respectively, and 

Na2RESiO4(OH) and NaRESiO4 for smaller cations at low and high synthesis 

temperatures, respectively.   

In this study we found that the fluoride/chloride eutectic flux growth conditions 

that yield the Na5RE4F[SiO4]4 structure for RE = Pr, Nd, Sm-Tm, surprisingly resulted in 

the formation of the NaRESiO4 structure for RE = La, Yb, Lu,7.43 for the larger and 

smaller rare earths, while the hydroflux and hydrothermal growth reaction conditions that 

form the Na5RE4(OH)[SiO4]4 structure for RE = Pr, Nd, Sm-Yb, Y, unexpectedly 

resulted in the formation of the Na2RESiO4(OH) structure for RE = La,7.46 Yb, Sc, for the 

larger and smaller rare earths, respectively. It should be noted that for the reported 

conditions and compositions, as a function of rare earth size, different structure types 

occur for larger and smaller rare earths with the NaRESiO4 structure adopting the Pna21 

space group for larger rare earths and adopting the Pnma space group for smaller rare 

earths and the Na2RESiO4(OH) structure adopting the Pnma space group for the larger 

rare earths and adopting the Pca21 space group for the smaller rare earths. 

Magnetic Properties 

 The magnetic data of Na2YbSiO4(OH) and NaYbSiO4 are summarized in Table 

7.5.  The NaYbSiO4 sample used for the collection of the magnetic susceptibility data 

contained roughly a quarter of a second ytterbium silicate phase, Na3YbSi2O7, to be 
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reported on in detail in the near future.  The magnetic data were corrected for the 

presence of the 2nd phase by determining the exact phase fraction, 75.2 % NaYbSiO4 and 

24.8 % of Na3YbSi2O7, by analyzing powder X-ray diffraction data using the JADE 

software package.  The magnetic susceptibilities and the inverse susceptibilities for both 

compounds are shown in Figure 7.10.  The samples are paramagnetic and the inverse 

susceptibilities were fit over the range of 100 – 300 K using the modified Curie-Weiss 

law χ = χ0 + C/(T-θ), where χ is susceptibility, χ0 is the temperature independent 

susceptibility, C is the Curie constant, and θ is the Weiss temperature.  The χ0 values 

from the fit (Table 7.5) were positive, as has previously been reported for ytterbium 

containing compounds, where the positive values were thought to arise from crystal field 

effects in the ytterbium.7.47, 7.48  The fit to the inverse magnetic susceptibility yielded 

effective moments of 4.20 µB for Na2YbSiO4(OH) and 4.18 µB for the NaYbSiO4 mixed 

sample.   

Conclusion 

 The new compositions Na2YbSiO4(OH) and Na2ScSiO4(OH) were synthesized 

using the hydroflux crystal growth method, while NaLaSiO4 and NaYbSiO4 were 

prepared using a traditional high temperature fluoride/chloride eutectic flux.  

Interestingly, these compositions all grow under the same conditions used to synthesize 

Na5RE4X[SiO4]4 (RE = Pr, Nd, Sm-Yb, Y; X = OH, F) indicating the substantial 

influence of rare earths size effects in silicate systems.  Paramagnetic behavior was 

observed for both Yb analogues. 
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Table 7.1. Crystallographic data for Na2RESiO4(OH) (RE = Sc, Yb) and NaRESiO4 (RE = La, Yb). 

Formula Na2ScSiO4(OH) Na2YbSiO4(OH) NaLaSiO4 NaYbSiO4 
Formula weight 200.04 328.12 253.99 288.12 
Temperature (K) 296(2) 296(2) 301(2) 296(2) 
Crystal System Orthorhombic Orthorhombic Orthorhombic Orthorhombic 
Space group Pca21 Pca21 Pna21 Pnma 
a (Å) 13.6153(7) 13.9074(5) 21.4726(10) 11.0329(3) 
b (Å) 5.4215(3) 5.5366(2) 9.4441(4) 6.3536(2) 
c (Å) 12.1083(7) 12.4876(5) 5.5008(3) 5.1054(2) 
V (Å3) 893.78(9) 961.54(6) 1115.50(9) 357.88(2) 
Z 8 8 12 4 
Density (Mg/m3) 2.973 4.533 4.537 5.347 
Absorption coefficient (mm-1) 2.027 19.806 11.786 26.440 
Crystal size (mm3) 0.06 x 0.06 x 0.05 0.08 x 0.03 x 0.02 0.05 x 0.04 x 0.01 0.08 x 0.040 x 0.03 
2 theta range (°) 5.98 to 65.19 5.86 to 65.29 4.71 to 80.68 7.388 to 70.466 
reflections collected 26026 27619 88663 9114 
data/restraints/parameters 3246 / 1 / 164 3503 / 7 / 164 7027 / 1 / 192 860 / 0 / 41 
R (int) 0.0796 0.0544 0.0404 0.0349 
GOF (F2) 1.081 1.048 1.203 1.133 
R indices (all data) R1 = 0.0626 R1 = 0.0307 R1 = 0.0226 R1 = 0.0280 
 wR2 = 0.1107 wR2 = 0.0527 wR2 = 0.0441 wR2 = 0.0444 
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Table 7.2. RE bond distances (in Å) for Na2RESiO4(OH) (RE = Sc, Yb). 
 
 Na2ScSiO4(OH) Na2YbSiO4(OH) 
RE(1) – O(4) 2.057(5) 2.207(6) 
RE(1) – O(2) 2.078(5) 2.204(7) 
RE(1) – O(6) 2.120(12) 2.275(13) 
RE(1) – O(7) 2.121(10) 2.200(9) 
RE(1) – O(9) 2.128(5) 2.240(6) 
RE(1) – O(10) 2.171(5) 2.262(6) 
RE(2) – O(8) 2.069(5) 2.193(6) 
RE(2) – O(5) 2.086(5) 2.190(6) 
RE(2) – O(10) 2.119(5) 2.262(6) 
RE(2) – O(1) 2.127(9) 2.261(8) 
RE(2) – O(3) 2.129(10) 2.187(13) 
RE(2) – O(9) 2.161(6) 2.287(6) 
 



www.manaraa.com

 

161 
 

Table 7.3. Yb bond distances (in Å) for NaYbSiO4. 
 

 NaYbSiO4 
Yb(1) – O(2) 2.170(3) 
Yb(1) – O(3) 2.221(3) 
Yb(1) – O(1) 2.235(2) 
Yb(1) – O(1) 2.235(2) 
Yb(1) – O(1) 2.235(2) 
Yb(1) – O(1) 2.235(2) 
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Table 7.4. La bond distances (in Å) for NaLaSiO4. 
 

La(1) La(2) La(3) 
La(1) – O(3) 2.422(3) La(2) – O(5) 2.442(2) La(3) – O(9) 2.404(3) 
La(1) – O(12) 2.452(3) La(2) – O(4) 2.459(3) La(3) – O(7) 2.488(3) 
La(1) – O(4) 2.501(3) La(2) – O(7)  2.490(3) La(3) – O(6) 2.517(3) 
La(1) – O(1) 2.521(3) La(2) – O(10) 2.519(3) La(3) – O(3) 2.525(3) 
La(1) – O(2) 2.527(2) La(2) – O(8) 2.545(2) La(3) – O(12) 2.533(3) 
La(1) – O(1) 2.555(3) La(2) – O(2) 2.600(2) La(3) – O(11) 2.547(2) 
La(1) – O(11) 2.581(2) La(2) – O(9) 2.658(3) La(3) – O(8) 2.573(2) 
La(1) – O(5) 2.619(3) La(2) – O(6) 2.683(3) La(3) – O(10) 2.763(3) 
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Table 7.5.  Experimental magnetic moments (µeff) compared to calculated moments 
(µcalc) for Na2YbSiO4(OH) and NaYbSiO4. 
 
 Na2YbSiO4(OH) NaYbSiO4 
Fit Range (K) 100 – 300  100-300 
χ0 0.00085 0.0029 
θ (K) -95.92 -75.81 
µeff (µB/RE) 4.20 4.18 
µcalc (µB/RE) 4.54 4.54 
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Figure 7.1. Visual representation of the two REO6 octahedra 
and mode of octahedra corner sharing in Na2ScSiO4(OH), where 
RE(1) is represented in green, RE(2) is in orange, silicon is in 
blue, and oxygens are in red.  
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Figure 7.2.  Overall representation of the structure of 
Na2ScSiO4(OH) where RE(1) are green, RE(2) are 
orange, Na are purple, silicon are blue, and oxygens are 
red. 
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Figure 7.3.  Illustration of 
NaYbSiO4 highlighting the edge- 
and corner-sharing of the SiO4 
tetrahedra to the REO6 octahedra. 
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Figure 7.4.  Structural image of NaYbSiO4, which highlights the overall 
olivine structure down the c axis.   Ytterbium is shown in orange, silicon 
is shown in blue, and sodium is shown in purple. 
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Figure 7.5.  Visual representation of NaYbSiO4 illustrating how the 
sodium atoms (purple) fill the channels created by the REO6 octahedra 
(orange) and SiO4 tetrahedra (blue).   
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Figure 7.6. Structural image of NaLaSiO4 where the La columns along 
the c axis are shown.  La polyhedra are shown in orange, Si is shown 
in blue, Na is shown in purple, and O is shown in red. 
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Figure 7.7. Structural representation of NaLaSiO4 down the a axis 
where the color scheme is the same as Figure 7.6. 
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Figure 7.8. Structural representation of NaLaSiO4 
showing the structure down the c axis where the color 
scheme follows the one detailed in Figure 7.6. 
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Figure 7.9. Scheme to organize the reported phases based on their synthesis 
conditions and as a function of rare earth cation size. 
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Figure 7.10.  Magnetic susceptibility and inverse 
magnetic susceptibility data of Na2YbSiO4(OH) (top) 
and NaYbSiO4 (bottom). 
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Chapter 8 

Synthesis, Structure, and Polymorphism of A3LnSi2O7 (A = Na, K; Ln = Sm, Ho, Yb)* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Latshaw, A. M.; Yeon, J.; Smith, M. D.; zur Loye, H.-C. J. Solid State Chem., 2016, 

235, 100-106.
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Introduction 

 Lanthanide containing silicates are an intensively researched area.  With a highly 

adaptive framework that can incorporate many lanthanide elements, it has been possible 

to synthesize numerous compositions and structural series of rare earth silicates.  The 

extensive research in lanthanide silicates is often driven by the wide range of optical and 

magnetic properties observed in these silicates.8.1-8.6  Herein we report the crystal growth 

of K3SmSi2O7 and Na3LnSi2O7 (Ln = Ho, Yb) and magnetic property measurements of 

the Na3LnSi2O7 (Ln = Ho, Yb) compositions. 

 The A3LnSi2O7 type silicates have been structurally characterized and many 

examples are known.  When A = K, reported compositions include K3NdSi2O7,
8.7 

K3EuSi2O7,
8.8 K3GdSi2O7 – K3LuSi2O7,

8.6 and even K3ScSi2O7.
8.9  K3SmSi2O7 fills the 

gap in the K3LnSi2O7 (Ln = Nd – Lu) series so that now all except radioactive 

promethium have been reported.  When A = Na, the known compositions are not as 

extensive and the only published sodium analogues are Na3LnSi2O7 (Ln = Tm, Y, Sc)8.10 

and Na3LuSi2O7.
8.11  We report two new Na3LnSi2O7 compositions; holmium and 

ytterbium where two polymorphs of the ytterbium phase were found. 

 All compositions were synthesized using fluoride fluxes, with K3SmSi2O7 being 

grown out of a KF flux and all Na3LnSi2O7 compositions grown out of a NaF/NaCl 

eutectic flux.  Fluoride fluxes have, in general, been found to be very good at dissolving 

silicon dioxide and lanthanide oxides.8.12  Alkali fluoride fluxes are also useful because 

they can be either reactive or non-reactive.  Examples in the literature include systems 

like K5Y2FSi4O13
8.13 and A5RE4F[SiO4]4 (A = Na, K; RE = Pr, Nd, Sm – Tm)8.3 where the 

fluoride source was either the KF or NaF/NaCl eutectic flux, respectively.  In the 
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ubiquitous apatite family, AxLn10-x(SiO4)6O2-yFy (A = Na, K; Ln = Pr, Sm – Gd)8.14, 0 ≤ y 

≤ 1.28 the fluoride from the alkali fluoride fluxes may or may not incorporate itself into 

the structure.  In the system discussed herein, A3LnSi2O7 (A = Na, K; Ln = Sm, Ho, Yb, 

Y) fluoride incorporation does not occur, which is analogous to what has been found for 

K3LnSi2O7 (Ln = Gd – Lu).8.6   With this in mind, one can begin to understand how small 

changes in fluoride flux conditions can often impact the compositions crystallized, 

making fluoride flux growth both versatile and, however, at times unpredictable. 

 Many times, small changes in reaction conditions lead to different compositions 

or, in reactions that yield mixed products, may favor one composition over the other.  In 

the current system, it was observed that changes in reaction conditions, while maintaining 

the same eutectic flux ratio, caused the Na3YbSi2O7 composition to crystallize in both the 

hexagonal P63/m and trigonal P31c space groups.  Interestingly, the conditions that led to 

the P31c space group for Na3YbSi2O7 led to the different space group of P63/m for 

Na3HoSi2O7, which one might have expected from the use of the identical synthetic 

conditions.  

Experimental Section 

Reagents 

 Sm2O3 (99.9 %), Ho2O3 (99.9 %), Yb2O3 (99.9 %), KF (99 % min.), and NaF (99 

% min.) were purchased from Alfa Aesar.  Na2CO3 (ACS grade), and NaCl (ACS grade) 

were purchased from Fisher Scientific.  SiO2 (99.99 %) was purchased from Aldrich as 

fused pieces and ground to a powder in a ball mill. 
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Synthesis 

Crystals of K3SmSi2O7 were grown using a KF flux.  Sm2O3 (0.5 mmol) and SiO2 

(1 mmol) were loaded into a silver crucible.  KF (5 g) was loaded on top of the reactants 

and a silver lid was loosely fitted on the crucible.  The crucible was placed into a 

programmable furnace that was set to ramp to 900 °C and dwell there for 12 h before 

slow cooling to 700 °C at a rate of 6 °C/h.   Upon cooling to 700 °C the furnace was shut 

off.  Crystals were isolated by dissolving the KF flux in water, aided by sonication, 

followed by vacuum filtration.  K3SmSi2O7 was the major phase with a small amount of 

unreacted Sm2O3 remaining. 

Crystals of Na3HoSi2O7 and Na3YbSi2O7 (P31c) were grown through a NaF/NaCl 

eutectic flux.  Ln2O3 (2 mmol), Na2CO3 (2 mmol), and SiO2 (4 mmol) were added to a 

silver crucible.  NaF (2.81 g) and NaCl (1.98 g) were then added to the crucible.  A silver 

lid was loosely fitted to the crucible and the crucible was loaded into a programmable 

box furnace.  The furnace was programmed to ramp to 800 °C, dwell there for 24 h, then 

slow cool to 600 °C at a rate of 6 °C/h before being shut off.  Crystals were isolated by 

dissolving the NaF/NaCl flux in water, aided by sonication, followed by vacuum 

filtration.  For Ho, the synthesis yielded a mixture of crystals of Na3HoSi2O7 and 

Na5Ho4F[SiO4]4
8.3 and for Yb, the synthesis yielded a mixture of Na3YbSi2O7 and 

NaYbSiO4.
8.15 

Crystals of Na3YbSi2O7 (P63/m) were grown through a NaF/NaCl eutectic flux.  

Yb2O3 (1 mmol), Na2CO3 (1 mmol), and SiO2 (2 mmol) were loaded into a silver 

crucible.  NaF (2.81 g) and NaCl (1.93 g) were then added to the crucible.  A silver lid 

was loosely fitted on the crucible and the crucible was loaded into a programmable box 
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furnace.  The furnace was programmed to go to 900 °C, dwell there for 60 h, then slow 

cool to 650 °C at a rate of 3 °C/h before being shut off.  Crystals were isolated by 

dissolving the NaF/NaCl flux in water, aided by sonication, followed by vacuum 

filtration. The reaction product was a mixture of Na3YbSi2O7, NaYbSiO4,
8.15 and Yb2O3 

as determined by powder X-ray diffraction.  

A polycrystalline powder of Na3HoSi2O7 was synthesized using traditional solid 

state methods.  Ho2O3 (0.5 mmol), SiO2 (2 mmol), and Na2CO3 (1.5 mmol) were ground 

for 30 minutes, placed into an open alumina crucible, and then put in a programmable 

furnace.  The furnace was programmed to reach 600 °C and dwell there for 6 h to calcine 

the reaction before being set to its final dwelling temperature of 800 °C.  With 30 min 

regrindings occurring every 24 – 48 h, the reaction was dwelled at 800 °C for a total of 

456 h.  At this point, the reaction had stopped changing, as evidenced by an invariant 

powder X-ray diffraction pattern, and consisted of the desired phase and a small amount 

of unreacted Ho2O3 and SiO2.  10 % of the original amount of Na2CO3 was then added to 

the reaction, which was ground for another 30 min.  The reaction was then put in a 

programmable furnace which was programmed to dwell at 600 °C to calcine the reaction 

before dwelling at 800 °C for 48 h.  After 48 h, the reaction was phase pure.  A 

traditional solid state reaction was also attempted for the Yb analogues, however, both 

polymorphs formed at the same temperatures. 

Single-Crystal X-ray Diffraction 

P63/mcm: K3SmSi2O7 

 X-ray intensity data from a colorless multifaceted prismatic crystal were collected 

at 296(2) K using a Bruker SMART APEX diffractometer (Mo Kα radiation, λ = 0.71073 
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Å).8.16  The data collection covered 100% of reciprocal space to 2θmax = 70.5º, with an 

average reflection redundancy of 26.6 and Rint = 0.036 after absorption correction.  The 

raw area detector data frames were reduced and corrected for absorption effects with the 

SAINT+ and SADABS programs.8.16  Final unit cell parameters were determined by 

least-squares refinement of 7870 reflections from the data set.  The initial structural 

model was taken from the literature.8.6  Subsequent difference Fourier calculations and 

full-matrix least-squares refinement against F2 were performed with SHELXL-2013/48.17 

using the ShelXle interface.8.18  All atoms were refined with anisotropic displacement 

parameters.  There was no deviation from full occupancy observed for any of the metal 

atoms, based on trial refinement of the site occupation factors.  The largest residual 

electron density peak and hole in the final difference map are +1.04 and -0.78 e-/Å3, 

located 0.68 and 0.15 Å from Sm(2) and K(1), respectively. 

P63/m: Na3HoSi2O7 and Na3YbSi2O7 

 X-ray intensity data from a pale yellow hexagonal prism crystal (Na3YbSi2O7), 

and a pale pink block crystal (Na3HoSi2O7) were collected at 294(2) K using a Bruker 

SMART APEX diffractometer (Mo Kα radiation, λ = 0.71073 Å).8.16  The data collection 

covered 100 % of reciprocal space to 2θmax = 56.6° with an Rint = 0.0335, and 0.0312, 

respectively, after absorption correction.  The raw area detector data frames were reduced 

and corrected for absorption effects with the SAINT+ and SADABS programs.8.16 Final 

unit cell parameters were determined by least-squares refinement the data set.  An initial 

structural model was obtained with direct methods.8.17  Subsequent difference Fourier 

calculations and full-matrix least-squares refinement against F2 were performed with 

SHELXL-2013/48.17 using ShelXle.8.18  All atoms were refined with anisotropic 
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displacement parameters.  All atoms were fully occupied based on trial refinement of the 

site occupation factors. 

P31c: Na3YbSi2O7 

 X-ray intensity data from a colorless hexagonal plate crystal of Na3YbSi2O7 were 

collected at 296(2) K using a Bruker SMART APEX diffractometer (Mo Kα radiation, λ 

= 0.71073 Å).8.16  The data collection covered 100% of reciprocal space to 2θmax = 70.5º, 

with an average reflection redundancy of 17.6 and Rint = 0.048 after absorption 

correction.  The raw area detector data frames were reduced and corrected for absorption 

effects with the SAINT+ and SADABS programs.8.16  Final unit cell parameters were 

determined by least-squares refinement of 8934 reflections from the data set.  An initial 

structural model was obtained with direct methods.8.17  Subsequent difference Fourier 

calculations and full-matrix least-squares refinement against F2 were performed with 

SHELXL-2013/48.17 using ShelXle.8.18 

 The compound crystallizes in the trigonal system.  The pattern of systematic 

absences in the intensity data suggested the space groups P31c, P-31c P63mc, P-62c and 

P63/mmc.  Some difficulty was encountered in identifying the proper space group, most 

likely because of the twinning discussed below.  The non-centrosymmetric group P31c 

(No. 159) was eventually confirmed by structure solution.  The completed model in P31c 

was checked for missed symmetry elements with ADDSYM, which found none.8.19-8.22 

The crystal was refined as a four-component, combined merohedral and inversion twin.  

Two domains related by a two-fold axis of rotation along the trigonal [110] direction 

were generated by the twin law [010 / 100 / 00-1].  The major domain volume fraction 

refined to 0.753(8).  Each of these two domains was further twinned by inversion, with 
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refined volume fractions of 0.791(8) (for the major domain) and 0.890(8) (minor 

domain).  The crystal therefore was modeled as being composed of four domains making 

up 59.6, 15.7, 22.0, and 2.7 % of the crystal.  The twin laws were determined by trial-

and-error after a reasonable model in P31c appeared to reach a refinement minimum of 

R1 ~ 8%.  Including the merohedral twin law lowered the R1-value to 2.6 %, and 

produced a Flack parameter of 0.149(5).  The non-zero Flack parameter suggested the 

presence of inversion twinning, though with only a small contribution to the diffraction 

data.  Accounting for inversion twinning of both domains lowered the R1-factors to the 

reported 2.4 %.  All atoms were refined with anisotropic displacement parameters.  No 

deviation from full occupancy was observed for any of the ytterbium atoms.  The largest 

residual electron density peak and hole in the final difference map are +1.54 and -2.16 e-

/Å3, located 1.01 and 0.55 Å from Yb(2) and Yb(4), respectively.  

Further details of the crystal structure investigation can be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany 

(fax:+497247808666; e-mail: crystdata@fiz-karlsruhe.de) on quoting the depository 

numbers 430192 (Na3YbSi2O7 – hexagonal), 430193 (K3SmSi2O7), 430194 

(Na3HoSi2O7), 430195 (Na3YbSi2O7 – trigonal). 

Powder X-ray Diffraction 

 Powder X-ray diffraction (PXRD) data were collected on powders, either ground 

crystals or polycrystalline, of Na3YbSi2O7 (both phases) and Na3HoSi2O7 using a Rigaku 

Dmax/2100 powder diffractometer using Cu Kα radiation for the Na3YbSi2O7 samples 

and a Rigaku Ultima IV diffractometer with a Cu Kα source (λ 1.54056 Å) and a D/teX 

detector for Na3HoSi2O7.  Data for the compounds were collected using a step scan 
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covering the 2θ range of 5 – 65 ° in steps of 0.02 °.  After PXRD data were collected, the 

cif file of the respected phases were overlaid and it was determined that Na3YbSi2O7 

(P63/m) was a mixture of Na3YbSi2O7, NaYbSiO4, and a small amount of Yb2O3; 

Na3YbSi2O7 (P31c) was a mixture of Na3YbSi2O7 and NaYbSiO4; and Na3HoSi2O7 was 

phase pure (Figure 8.1).   

Magnetic Measurements 

 The DC magnetic susceptibilities of Na3YbSi2O7 and Na3HoSi2O7 were measured 

as a function of temperature using a Quantum Design MPMS 3 SQUID Magnetometer.  

52.70 mg of a mixed ground polycrystalline powder of Na3YbSi2O7 (P31c) and 

NaYbSiO4, 75.91 mg of a mixed ground polycrystalline powder of Na3YbSi2O7 (P63/m) 

NaYbSiO4, and Yb2O3, and 45.91 mg of a pure polycrystalline sample of Na3HoSi2O7 

were massed on a balance sensitive to 0.01 mg and loaded into a gelatin capsule for data 

collection.  The zero-field cooled magnetic susceptibility was measured as a function of 

temperature between 2-300 K in an applied field of 1000 Oe.  The measured magnetic 

data were corrected for shape and radial offset effects using the method reported by 

Morrison et. al.8.23 

Results and Discussion 

Synthesis 

 Two different fluxes, KF and a 67 % NaF/ 33% NaCl eutectic mixture were used 

to synthesize four new silicate materials.  Using the eutectic sodium halide flux, two 

different crystals, Na3HoSi2O7, which crystallizes in the space group P63/m, and 

Na3YbSi2O7, which crystallizes in the space group P31c, were crystallized under the 

identical reaction conditions, however, when the reaction temperature was increased, the 
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P63/m polymorph of Na3YbSi2O7 was obtained.  Crystals of the Yb P63/m phase were 

obtained when the reaction was dwelled 100 °C higher, dwelled for 36 hours longer, and 

cooled at half the cooling rate.  Since all conditions were changed (except the eutectic 

flux ratio), it is impossible to be certain exactly what caused the space group change, 

however, it is clear that a longer reaction at a higher temperature was needed to 

crystallize the ytterbium containing P63/m phase.  The space group change could 

therefore be the result of a size effect, a kinetic effect, or a thermodynamic effect.  A size 

effect would make sense since in the K3LnSi2O7 system reported by Vidican8.6 it was 

found that under identical reaction conditions the lanthanides Gd – Lu, all crystallized in 

the P63/mcm space group, except for the Lu member, which crystallized in P63/mmc.  It is 

possible that when using identical conditions for the lanthanide series that there is a size 

effect where the composition still crystallizes but crystallizes in a different space group.  

If the space group of the crystal is under kinetic control, then the longer dwelling and 

cooling times could have favored the hexagonal space group.  Finally, if it was a 

thermodynamic effect, the higher reaction temperatures might have caused a change in 

the structure.  After attempting a solid state reaction with Yb and finding that at 800 °C 

both phases formed, thermodynamic effects can most likely be ruled out leaving size and 

kinetic effects, or perhaps some combination of both. 

Structures 

P63/mcm: K3SmSi2O7 

 K3SmSi2O7 is isostructural with K3LnSi2O7 (Ln = Nd, Eu – Tm).8.6, 8.7  In this 

P63/mcm space group, there are two unique samarium sites, one unique silicon site, three 

unique potassium sites, and three unique oxygen sites.  Crystallographic data is listed in 
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Table 8.1 with selected interatomic distances contained in Table 8.2.  In this structure, 

both samarium sites are 6 coordinated, with Sm(1)O6 forming a trigonal prism and 

Sm(2)O6 forming an octahedra.  Silicon is found in bent Si2O7 units where the bend 

occurs towards the Sm(1) trigonal prisms.  The bridging Si – O – Si angles for the Si2O7 

units are shown in Table 8.3.  Three Si2O7 units corner share with the Sm(1) trigonal 

prism through O(2) (Figure 8.2).  The other four oxygen sites (O(1)) on the Si2O7 that are 

not making the Si – O(3) – Si bond or corner share to the Sm(1) trigonal prism are corner 

sharing to the Sm(2) octahedra.  When viewed down the c axis, it can be seen that the 

Sm(1) trigonal prisms are each rotated 60 ° with respect to the one above it and that the 

Sm(2) octahedra perfectly stack on top of one another (Figure 8.3).  K(1) atoms are 

located in line with the Si atoms and  K(2) atoms are located in line with the Sm(2) atoms 

down the c axis; finally the K(3) atoms are located in line with Sm(1) atoms down the c 

axis. The overall structure viewed down the b axis is shown in Figure 8.4.  

P63/m: Na3HoSi2O7 and Na3YbSi2O7 

 Na3HoSi2O7 and one polymorph of Na3YbSi2O7 crystallize in the hexagonal space 

group P63/m and are isostructural with Na3YSi2O7 and Na3LuSi2O7.
8.10, 8.11  

Crystallographic tables for both reported compositions are included in Table 8.1 with 

selected interatomic distances shown in Table 8.2.  In this structure there are two unique 

lanthanide sites, one unique silicon site, four unique sodium sites, and four unique 

oxygen sites.  As in K3SmSi2O7, both Ln sites are 6 coordinated with Ln(1) adopting a 

trigonal prism and Ln(2) an octahedral coordination environment.  Also, as found in 

K3SmSi2O7, the silicon is located in bent Si2O7 units that are once again corner shared to 

the Sm(1) trigonal prisms, however, unlike in K3SmSi2O7, the bend of the Si2O7 unit does 
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not point towards the trigonal prism (Figure 8.5).  Bridging Si – O – Si angles for the 

Si2O7 units are summarized in Table 8.3.  The remaining oxygens on the Si2O7 unit, O(1) 

and O(3) corner share to the Ln(2) octahedra.  When looking down the c axis, the 

structure appears similar to that of K3SmSi2O7 because the Ln(1) trigonal prisms are 

again rotated 60 ° with respect to the one above it and the Ln(2) octahedra are again 

stacked perfectly on top of each other.  The Si2O7 units are responsible for the major 

difference between this structure and the K3SmSi2O7 structure down the c axis.  Because 

the Si2O7 units do not bend towards Ln(1), they do not form a perfectly symmetrical 

pinwheel shape when viewing the structure down the c axis (Figure 8.6).  The structure 

has four sodium sites compared to the three in the K3SmSi2O7 structure.  The Na(1) 

atoms are in line with the Ln(1) atoms down the c axis, the Na(2) and Na(3) atoms 

alternate and are in line with the Ln(2) atoms down the c axis, and the Na(4) atoms fill in 

the channels of the Si2O7 units down the c axis.  The overall structural image viewed 

down the b axis is shown in Figure 8.7. 

P31c: Na3YbSi2O7 

 Na3YbSi2O7 crystallizes in the trigonal space group P31c.  Crystallographic tables 

for the composition are shown in Table 8.1 with selected interatomic distances shown in 

Table 8.2.  In this structure, there are 43 unique atomic positions in the asymmetric unit: 

5 ytterbium atoms, 6 silicon atoms, 11 sodium atoms and 21 oxygen atoms.  All atoms 

are located on general positions (site 6c) except for Yb(3), Yb(4), Na(9), and Na(10), 

which are located on the threefold axis at (1/3,2/3,z) (site 3b), and Yb(5) and Na(11), 

which are located on the threefold axis at (0,0,z) (site 3a).  Like the previous structures, 

all ytterbium sites are 6 coordinated with octahedral, trigonal prismatic, and distorted CN 
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= 6 coordination environments.  In this structure, Yb(1) and Yb(2) are all octahedral 

while Yb(4) is trigonal prismatic.  Yb(3) and Yb(5) are distorted.  The silicon, as in the 

previous structures, occupies bent Si2O7 units that are corner shared to ytterbium 

polyhedra.  The bridging Si – O – Si angles of the Si2O7 units are listed in Table 8.3.  

The Si2O7 units are formed by Si(1) and Si(2), Si(3) and Si(4), and Si(5) and Si(6), 

respectively.  Each Si2O7 unit corner shares with two Yb(1) and two Yb(2) polyhedra 

with Si(1) and Si(2) also corner sharing to two Yb(5), Si(3) and Si(4) with two Yb(3), 

and Si(5) and Si(6) with two Yb(4).  The sodium atoms fill channels between the 

ytterbium and silicon polyhedra.  The overall structural images viewed down the a and c 

axes are shown in Figures 8.8 and 8.9, respectively.  The view down the c axis 

emphasizes how the additional ytterbium, silicon, and sodium sites change the structure 

between the three different structures. 

Magnetic Measurements 

 Herein we present the first reported magnetism on the A3LnSi2O7 compositions.  

The magnetic data for Na3HoSi2O7 is summarized in Table 8.4.  The Na3HoSi2O7 sample 

was a phase pure polycrystalline sample while the magnetism samples of both 

Na3YbSi2O7 contained a mixture of Na3YbSi2O7 and NaYbSiO4, with the hexagonal 

phase also containing some Yb2O3.  The magnetic susceptibilities and inverse 

susceptibilities are shown in Figure 8.10.  All three samples are paramagnetic.  We did 

not calculate the moments for the Yb samples due to the presence of impurities.  For Ho, 

the inverse susceptibility was fit over the range of 150 – 300 K. The effective moment is 

10.16 µB for Na3HoSi2O7, which is close to the expected moment for Ho, 10.4 µB. 

 



www.manaraa.com

187 

 

Conclusion 

 K3SmSi2O7, Na3HoSi2O7, and two polymorphs of Na3YbSi2O7 are reported, 

where the compositions reported herein crystallize in three different space groups.  

P63/mcm and P63/m are space groups that have been previously reported for members of 

the A3LnSi2O7 family, however, P31c represents a new structure type for A3LnSi2O7 

compositions.  We report the first magnetic studies on this structural family, in which it 

was determined that these compositions are paramagnetic.   
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Table 8.1. Crystallographic data for K3SmSi2O7, Na3HoSi2O7, and two crystals of Na3YbSi2O7. 

 

Formula K3SmSi2O7 Na3HoSi2O7 Na3YbSi2O7 Na3YbSi2O7 

Formula weight 435.83 402.88 410.19 410.19 

Temperature (K) 296(2) 294(2) 294(2) 294(2) 

Crystal system Hexagonal Hexagonal Hexagonal  Trigonal  

Space group P 63/mcm P 63/m P 63/m P 31c 

a (Å) 9.97640(10) 9.42330(10) 9.3770(2) 16.2081(2) 

c (Å) 14.4844(3) 13.7882(3) 13.7187(4) 13.7077(4) 

V (Å3) 1248.47(4) 1060.34(3) 1044.65(4) 3118.60(12) 

Z 6 6 6 18 

Density (mg/m3) 3.478 3.778 3.912 3.931 

Absorption coefficient 

(mm-1) 
8.842 11.711 13.954 14.023 

Crystal size (mm3) 0.14 × 0.10 × 0.08 0.08 × 0.08 × 0.04 0.16 × 0.08 × 0.08  0.20 × 0.16 × 0.05  

2 theta range (°) 4.71 to 70.53 5.00 to 56.56 5.02 to 56.70  2.90 to 70.54  

reflections collected 28791 14230 14399  86609  

data/restraints/parameters 1047 / 0 / 41 926 / 0 / 64 926 / 0 / 64 9324 / 1 / 356 

R (int) 0.0363 0.0312 0.0335 0.0476 

GOF (F2) 1.184 1.231 1.273 1.069 

R indices (all data) 
R1 = 0.0354 R1 = 0.0190 R1 = 0.0143 R1 = 0.0256 

wR2 = 0.0766 wR2 = 0.0443 wR2 = 0.0350 wR2 = 0.0536 
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Table 8.2.  Lanthanide interatomic distances for the reported compositions. 

 

 Ln – O distances (Å) 

K3SmSi2O7  

Sm(1) – O(2) (x6) 2.338(2) 

Sm(2) – O(1) (x6) 2.300(2) 

  

Na3HoSi2O7  

Ho(1) – O(2) (x6) 2.285(3) 

Ho(2) – O(1) (x3) 2.235(3) 

Ho(2) – O(3) (x3) 2.260(3) 

  

Na3YbSi2O7 – P63/m  

Yb(1) – O(3) (x6) 2.252(3) 

Yb(2) – O(3) (x3) 2.203(3) 

Yb(2) – O(4) (x3) 2.225(3) 

  

Na3YbSi2O7 – P31c  

Yb(1) – O(4) 2.179(6) 

Yb(1) – O(9) 2.180(5) 

Yb(1) – O(12) 2.206(5) 

Yb(1) – O(7) 2.234(8) 

Yb(1) – O(16) 2.239(6) 

Yb(1) – O(19) 2.256(6) 

Yb(2) – O(6) 2.178(6) 

Yb(2) – O(18) 2.193(8) 

Yb(2) – O(21) 2.206(8) 

Yb(2) – O(11) 2.222(6) 

Yb(2) – O(3) 2.233(5) 

Yb(2) – O(14) 2.275(5) 

Yb(3) – O(13) (x3) 2.209(6) 

Yb(3) – O(10) (x3) 2.238(6) 

Yb(4) – O(20) (x3) 2.252(5) 

Yb(4) – O(17) (x3) 2.254(5) 

Yb(5) – O(5) (x3) 2.217(6) 

Yb(5) – O(2) (x3) 2.239(6) 
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Table 8.3.  Si-Si bend angles for the reported compositions. 
 

 Si-Si bend angles (°) 

K3SmSi2O7  

O(2) – O(3) – O(2) 68.27  

Na3HoSi2O7  

O(2) – O(4) – (O2) 69.86  

Na3YbSi2O7 – P63/m  

O(1) – O(2) – O(1) 68.72  

Na3YbSi2O7 – P31c  

Si(1) – Si(2)  

O(5) – O(1) – O(2) 69.61  

Si(3) – Si(4)  

O(10) – O(8) – O(13) 67.58  

Si(5) – Si(6)  

O(17) – O(15) – O(20) 68.13  
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Table 8.4.  Experimental magnetic moments (μeff) compared to calculated moments 

(μcalc) for Na3HoSi2O7. 

 

 Na3HoSi2O7 

Fit Range (K) 150 – 300  

χ0 -- 

θ (K) -5.64 

μeff (μB/RE) 10.16 

μcalc (μB/RE) 10.4 
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Figure 8.1. PXRD pattern of Na3HoSi2O7 sample used for 

magnetic measurements where the observed pattern is shown in 

black with the cif file of Na3HoSi2O7 overlaid in red. 
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Figure 8.2.  Illustration of how the Si2O7 units bend towards the Sm(1) 

trigonal prism. 
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Figure 8.3. View down the c axis of K3SmSi2O7 where Sm is shown in 

orange, Si is shown in blue, K is shown in purple, and O is shown in red. 
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Figure 8.4. K3SmSi2O7 shown down the b axis using the 

color scheme found in Figure 8.3. 
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Figure 8.5. Illustration of bridging Si – O – Si angles and how the Si2O7 

units do not point at the Ho(1) atom. 
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Figure 8.6. Illustration of Na3HoSi2O7, representative of Na3YbSi2O7 

(P63/m), where the stacking of the lanthanide polyhedra and the tilt of the 

silicon polyhedra can be seen.  Ho is shown in orange, Si is shown in blue, 

Na is shown in purple, and O is shown in red. 
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Figure 8.7. Overall structural image of 

Na3HoSi2O7 down the b axis.  Color scheme 

is described in Figure 8.6. 
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Figure 8.8. Visual representation of Na3YbSi2O7 (P31c) 

down the a axis where Yb is shown in orange, Si is shown 

in blue, Na is shown in purple, and O is shown in red. 
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Figure 8.9. Visual representation of Na3YbSi2O7 

(P31c) down the c axis where the color scheme is the 

same as Figure 8.8. 
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Figure 8.10. Magnetic susceptibility and inverse 

magnetic susceptibility data of Na3HoSi2O7 (top), 

Na3YbSi2O7 P63/m (middle), and Na3YbSi2O7 P31c 

(bottom). 
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Chapter 9 

 

Intrinsic Blue-White Luminescence, Luminescence Color Tunability, Synthesis, 

Structure, and Polymorphism of K3YSi2O7* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Latshaw, A. M.; Morrison, G.; zur Loye, K. D.; Myers, A. R.; Smith, M. D.; zur Loye, 

H.-C. CrystEngComm, 2016, 18(13), 2294-2302
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Introduction 

 The development of new luminescent host materials is motivated by the need for 

improved materials in numerous important applications, including new optical materials 

for use in solid state lighting,9.1-9.4 in biomedical imaging (upconversion in particular),9.5-

9.7 and in optoelectronic devices.9.8-9.10 These needs continue to advance research in the 

field of rare earth doped luminescent materials, where the development of new materials 

that emit in the visible portion of the electromagnetic spectrum when excited by higher 

energy visible light is of particular interest.9.11  Many of the trivalent rare earths display 

luminescence due to the ease with which excited states can be populated, coupled with 

the prevalence of radiative rather than non-radiative decays to the ground state.9.12 

Trivalent europium specifically has attracted attention due to its intense red luminescence 

around 610 nm.  The local environment plays a crucial role in the intensity of this 

luminescence and, hence, many inorganic materials, including oxides,9.13-9.15  nitrides,9.16 

and other matrices9.17 have been evaluated as hosts for luminescent rare earths.  In 

addition, Eu3+ luminescence is enhanced and more tunable if it is the activator ion in a 

system that has a sensitizer ion.9.18  Past research and LED technology has heavily relied 

on Ce3+ as the sensitizer ion in systems.  Unfortunately, Ce3+ compositions must be 

synthesized in reducing conditions so it has become important to find other ions that can 

be sensitizers.  Recently, a large amount of research has focused on Dy3+ as the sensitizer 

ion in compositions for LED technology.9.18-9.23  Dy3+ has two strong emissions, a blue 

emission caused by the 4F9/2 to 6H15/2 transition and a yellow emission due to the 4F9/2 to 

6H13/2 transition.  Despite the positive change away from the need for reduced reaction 

conditions, the global shortage of select rare earth elements, specifically europium, has 
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driven up price and greatly restricted availability, driving a renewed interest in exploring 

self-activated luminescent materials. 

 Luminescent oxides can broadly be subdivided into self-activated or intrinsic, and 

rare earth activated phosphors, that encompass several classes of luminescent materials of 

current interest.  Self-activated luminescent hosts often contain d0 early transition metals, 

including tungstates and niobates, but do not contain late transition metals with d-

electrons.  As previously mentioned, there is a global shortage of select rare earth 

elements, which, along with the renewed interest in self-activated luminescent materials, 

is fueling the search for new intrinsic phosphors whose emissions can be tuned with very 

small quantities of rare earth elements to achieve white light emission. 

Solid state lighting research is continuously focused on achieving the next 

advance in light emitting diode (LED) technology, where advanced phosphor coatings 

have to be more economical and exhibit better efficiencies than those currently on the 

market.  In order to be more economical, it is important to only require small amounts of 

costly rare earth elements like europium.  For that reason, over the past decade, 

researchers have explored the luminescence properties of yttrium and lutetium containing 

silicates that exhibit intrinsic luminescence.9.24-9.27 Although intrinsically luminescent 

silicates are rare, sufficient numbers have been analyzed to conclude that the intrinsic 

luminescence arises from self-trapped excitons in the silicate structure.   

 In addition to intrinsically luminescent silicates, rare earth containing silicates 

have been studied as rare earth activated phosphors because the rigid silicate frameworks 

have few interactions with the rare earth ions, thereby not dampening the rare earth 

luminescence.9.28-9.32 Despite their rigid frameworks, silicate compositions are often able 
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to incorporate many, if not all of the rare earth elements such as is seen in some structural 

families such as A5RE4X[SiO4]4 (A = Na, K; RE = Pr, Nd, Sm – Yb; X = F, OH),9.30, 9.32 

K3RESi2O7 (RE = Nd, Sm-Lu, Sc),9.33-9.36 and Na3LnSi2O7 (Ln = Ho, Tm – Lu, Y, Sc). 

9.37, 9.38  The ability to combine intrinsic luminescence in silicates with their ability to be 

color tuned via the introduction of small amounts of rare earths, such as europium, makes 

this a very promising class of luminescent materials.  

 We chose to use flux crystal growth to explore the preparation of new intrinsically 

luminescent silicates and, furthermore, to use flux crystal growth to dope small quantities 

of rare earth dopants, such as europium, into the silicate framework to fine tune the color 

emission.  Fluoride fluxes are known to be good choices for synthesizing rare earth 

silicates, as they easily dissolve the silicon and rare earth starting materials, allowing new 

compositions to be synthesized in short reaction times.9.39  Using optimized reaction 

conditions, phase pure products can be obtained and the amount of rare earth doped into 

such silicates can be confirmed by single crystal X-ray diffraction.  

 During our exploration of the alkali-metal:rare-earth:silicate system we 

synthesized two new polymorphs of a member of the A3RESi2O7 compositional family, 

one of which is intrinsically luminescent.  Herein we discuss the synthesis of the two 

polymorphs of K3YSi2O7 and our doping studies that lead to white light emitting 

phosphors containing only 0.1 % of europium.    

Experimental Section 

Reagents 

 Y2O3 (99.99 % and 99.999 %) were purchased from Aldrich and Alfa Aesar, 

respectively.  Dy2O3 (99.9 %), Eu2O3 (99.9 %), and KF (99 % min.) were purchased from 
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Alfa Aesar.  SiO2 (99.99 %) was purchased from Aldrich as fused pieces and ground to a 

powder in a ball mill.   

Synthesis 

 Crystals of the K3YSi2O7 composition that crystallizes in the space group 

P63/mmc (1) were grown out of molten potassium fluoride flux.  Y2O3 (99.99 %, 0.5 

mmol), SiO2 (1 mmol), and KF (1 g) were added to a silver tube that had been welded 

shut on the bottom.  The tube containing the reactants was dried in a vacuum oven for 30 

min before the other end of the tube was welded shut.  The tube was placed in a 

programmable oven that was set to heat to 900 °C, dwell for 12 h, then slow cool to 700 

°C at a rate of 6 °C/h at which point the furnace was shut off.  The tube was then cut open 

and the flux was washed away by sonication in water before the crystals were isolated by 

vacuum filtration.  This reaction led to a mix of both phases of K3YSi2O7 and 

K5Y2FSi4O13, where there were very few crystals of the K3YSi2O7 phase that crystallizes 

in the space group P63/mmc (1).  An SEM image is shown in Figure 9.1. 

 Crystals of K3YSi2O7 that crystallize in the space group P63/mcm (2) were grown 

out of a molten potassium fluoride flux.  Y2O3 (99.999 %; 1 mmol), SiO2 (2 mmol), and 

KF (1 g) were loaded into a silver tube that had been welded shut on the bottom.  The 

loaded tube was dried in a drying oven at 110 °C for one h before it was crimped and 

folded three times.  The crimped tube was loaded into a programmable furnace that was 

set to an identical program as that used to grow polymorph 1, with the exception of a 

cooling rate of 3 °C/h instead of 6 °C/h.  The tube was opened and the flux was removed 

by sonication in water before isolation by vacuum filtration.  Other reaction conditions 

explored include the use of welded silver tubes, open silver crucibles, extended dwell 
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times, and faster cooling rates.  The conditions reported were found to be the best 

conditions to favor the product and maximize crystal growth.  An SEM image is shown in 

Figure 1.  

 Crystals of K3Y0.9Dy0.1Si2O7 (2-Dy), where an SEM image is shown in Figure 

9.1, and crystalline samples of doping levels of 0.1 % Eu, 15 % Dy and 0.12 % Eu, 15 % 

Dy and 0.1 % Eu, 10 % Dy and 0.1 % Eu (2-Dy,Eu), and 9 % Dy and 0.1 % Eu were 

grown out of the idealized conditions for the parent K3YSi2O7 (2) composition using the 

appropriate doping levels of the respective rare earths.  Accurate amounts of Eu doping 

were obtained by creating a 1 % Eu : 99 % Y stock of Eu2O3 and Y2O3 that was ground 

together for 30 min to mix.  This stock was then weighed out along with appropriate 

Y2O3 amounts to obtain the desired ratios.   

Single-Crystal X-ray Diffraction 

 X-ray intensity data from a colorless needle crystal of K3YSi2O7 (2) and a 

colorless rod of K3Y0.9Dy0.1Si2O7 (2-Dy) were collected at 298(2) and 303(2) K, 

respectively, using a Bruker D8 QUEST diffractometer equipped with a PHOTON100 

CMOS area detector and an Incoatec microfocus source (Mo Kα radiation, λ = 0.71073 

Å).9.40  The data collection covered 100 % of reciprocal space to 2θmax = 72.7 º and 75.5 

°, with Rint = 0.042 and 0.058, respectively, after absorption correction.  The raw area 

detector data frames were reduced and corrected for absorption effects using the SAINT+ 

and SADABS programs.9.40  Final unit cell parameters were determined by least-squares 

refinement of large sets (> 8800) reflections taken from the data set. An initial structural 

model was taken from the literature.9.36  Subsequent difference Fourier calculations and 
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full-matrix least-squares refinement against F2 were performed with SHELXL-20149.41 

using the ShelXle and OLEX2 interfaces, respectively.9.42, 9.43 

 Both compounds (2 and 2-Dy) crystallize in the hexagonal system. The space 

group P63/mcm (No. 193) was determined by successful structure solution. The 

compounds are isostructural with the Gd, Tb, Dy, Ho, Er, Tm, and Yb rare earth 

analogues reported previously.9.36 All atoms were refined with anisotropic displacement 

parameters.  Trial refinements of the site occupation factors showed no significant 

deviations from full occupancy for any atoms.  The largest residual electron density peaks 

of 0.59 e-/Å3 (2) and 0.61 e-/Å3 (2-Dy) in the final difference maps are located < 0.6 Å 

from K1 (2) and K2 (2-Dy), and the deepest holes are -0.55 e-/Å3 (2) and -0.65 e-/Å3 (2-

Dy), located <0.6 Å from K1 (2) and K2 (2-Dy). 

 X-ray intensity data from a colorless hexagonal prism of K3YSi2O7 (1) were 

collected at 296(2) K using a Bruker SMART APEX diffractometer (Mo Kα radiation, λ 

= 0.71073 Å).9.44 The data collection covered 100 % of reciprocal space to 2θmax = 70.2 º, 

with an average reflection redundancy of 19.5 (Laue group 6/mmm) and Rint = 0.0404 

after absorption correction.  The raw area detector data frames were reduced and 

corrected for absorption effects with the SAINT+ and SADABS programs.9.44 Final unit 

cell parameters were determined by least-squares refinement of 2261 strong reflections 

taken from the data set.  Atomic coordinates for the initial structural model were taken 

from the literature data for K3LuSi2O7.
9.36 Full-matrix least-squares refinement against F2 

of this model and difference Fourier calculations and were performed with SHELXL9.41 

using the ShelXle interface.9.42 
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 The compound crystallizes in the hexagonal system.  Systematic absences in the 

intensity data were consistent with expected space group P63/mmc, which was confirmed 

by structure solution.  The compound is isostructural with K3LuSi2O7, and refinement of 

that model converged rapidly with yttrium on the rare earth site.  All atoms were refined 

with anisotropic displacement parameters.  The largest residual electron density peak of 

0.39 e-/Å3 in the final difference map is located 0.46 Å from O1, and the deepest hole is -

0.74 e-/Å3, located 1.10 Å from Si1.  Further details of the crystal structure investigation 

can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-

Leopoldshafen, Germany (fax:+497247808666; e-mail: crystdata@fiz-karlsruhe.de) on 

quoting the depository numbers CSD- 430536 (K3Y0.9Dy0.1Si2O7 – 2-Dy), 430537 

(K3YSi2O7 – 1), and 430538 (K3YSi2O7 – 2). 

Powder X-ray Diffraction 

 Powder X-ray diffraction (PXRD) data were collected on ground samples of 

K3YSi2O7 (2) and the doped compositions of 0.1 % Eu, 10 % Dy, 15 % Dy and 0.12 % 

Eu, 15 % Dy and 0.1 % Eu, 10 % Dy and 0.1 % Eu, 9 % Dy and 0.1 % Eu using a Rigaku 

Dmax/2100 powder diffractometer with a Cu Kα source (λ = 1.54056 Å).  Data for the 

compounds were collected using a step scan covering the 2θ range of 5 – 80 ° in steps of 

0.02 ° at a scan speed of 0.1 °/min.  After PXRD data were collected, a diffraction pattern 

calculated using the cif file of the parent phase was overlaid to determine the purity of the 

samples.  It was found that the samples also contained some SiO2,
9.45 which does not 

affect the luminescence.  X-ray diffraction patterns of the K3YSi2O7 (2) and the white 

light emitting sample of 10 % Dy, 0.1 % Eu (2-Dy,Eu) are shown in Figures 9.2 and 9.3.    
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Fluorescence Spectroscopy 

 Room temperature emission spectra were collected on powders of the parent 

K3YSi2O7 (2) and doped compounds at an excitation λ of 254 nm using an Edinburgh 

FS5 fluorescence spectrometer.  A 150 W Continuous Wave Xenon Lamp was used for 

sample excitation, and the emission measured using a Hamamatsu R928P photomultiplier 

tube.  For emission measurements, the ground powders were placed inside a 0.5 mm 

quartz sample holder using the SC-10 front-facing module.  Emission scans were 

performed in the 410 – 800 nm range.  Room temperature excitation and emission spectra 

of the parent K3YSi2O7 (2) and doped compounds were collected using a Perkin Elmer 

LS 55 fluorescence spectrometer.  Excitation spectra of 2-Dy,Eu were collected in the 

200 – 450 nm range at an emission λ of 401 nm and emission spectra were collected in 

the 200 – 750 nm range at an excitation λ of 280 nm. 

Results and Discussion 

Flux Growth 

 The use of high temperature solutions for crystal growth is well established 9.39 

and, while crystals of most materials can be grown out of more than one solvent system, 

it is known empirically that some fluxes work especially well for some classes of 

materials. This is the case for alkali fluoride melts, which are believed to be one of the 

best solvent systems for oxides, corroborated by the fact that they have been used with 

great success for the crystal growth of a wide variety of complex oxides, including 

silicates.  9.31, 9.32, 9.35, 9.36, 9.46-9.48  There are of course many reasons why fluoride melts 

work so well for growing oxide crystals, including their relatively low melt temperatures 

and extensive capacity for dissolving oxides.  In rare earth silicate chemistry, there has 
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been a recent surge in the use of molten fluoride flux growth9.49-9.51 as it has been 

observed that fluorides enable quick dissolution of the rare earth oxides and silicon 

dioxide9.30, 9.31, 9.35, 9.36, 9.46-9.48, 9.52-9.55 so complex oxides can be formed in relatively short 

reaction times. 

 The two polymorphs differ in structure as discussed below and their luminescent 

properties are quite different.  For this reason the conditions under which phase pure 

products of (2) could be obtained were investigated.   Depending on the rate used to cool 

from 900 °C to 700 °C, either a mixture of K3YSi2O7 (1) and K5Y2FSi4O13,
9.48 (6 °C/h) or 

phase pure K3YSi2O7 (2) (3 °C/h), were obtained. Europium and dysprosium substituted 

K3Y1-x-yDyxEuySi2O7 compositions were obtained as phase pure samples in the space 

group P63/mcm when the 3 °C/h. cooling rate was employed.   

Structure 

 K3YSi2O7 (1) is isostructural to the previously reported compositions 

K3LuSi2O7
9.36 and K3ScSi2O7.

9.35  Interestingly, studies by Vidican et al.9.36 observed a 

size dependence for the lanthanides in the K3LnSi2O7 family, where for Ln = Gd – Tm all 

crystallize in the space group P63/mcm, while Ln = Lu crystallizes in the space group 

P63/mmc.  Since the ionic radius of Y (0.9 Å), falls between the radii of Er (0.89 Å) and 

Ho (0.901 Å), it was predicted by Vidican that the yttrium containing composition would 

crystallize in the space group P63/mcm. 9.36, 9.56   

 For K3YSi2O7 (1) crystallizing in the space group P63/mmc, there is one unique 

yttrium site, one unique silicon site, two unique potassium sites, and two unique oxygen 

sites. The yttrium is located in an undistorted octahedral coordination environment.  The 

yttrium sites are isolated from each other with every oxygen in the YO6 octahedron being 
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corner shared with a silicon SiO4 tetrahedra.  The silicon tetrahedra form bent Si2O7 

pyrosilicate units with bridging Si – O – Si linkages of 109 °.  The potassium atoms are 

located in channels where K(1) is aligned with the silicon atoms down the c-axis and 

K(2) is aligned with the yttrium atoms down the c-axis.  Images of the crystal structure 

viewed down the a- and c-axes are shown in Figures 9.4 and 9.5, respectively.  

Crystallographic tables and Y – O bond distances are given in Tables 9.1 and 9.2, 

respectively. 

 For K3YSi2O7 (2) crystallizing in the space group P63/mcm, there are two unique 

yttrium sites, one unique silicon site, three unique potassium sites, and three unique 

oxygen sites.  The two yttrium sites are both isolated and both are in six-fold coordination 

environments with Y(1) adopting a regular octahedral environment and Y(2) adopting a 

regular trigonal prismatic environment.  The yttrium polyhedra stack in line down the c-

axis with the trigonal prisms each rotated 60 ° from the trigonal prism above and below 

it.  The yttrium YO6 polyhedra are again corner shared to silicon SiO4 tetrahedra via all 

six oxygen sites.  The silicon tetrahedra form bent Si2O7 pyrosilicate units with bridging 

Si – O – Si linkages of 66 °.  The potassium fills channels throughout the structure with 

K(1) aligned with the Si atom down the c-axis, K(2) aligned with the Y(1) atoms down 

the c-axis, and K(3) aligned with the Y(2) atoms down the c-axis.  The overall structure, 

viewed down the a- and c-axes is illustrated in Figures 9.6 and 9.7, respectively.  

Crystallographic data and Y – O bond distances are included in Tables 9.1 and 9.2, 

respectively. 

 The structures of dysprosium substituted crystals, K3Y0.9Dy0.1Si2O7 (2-Dy), were 

also determined by single crystal X-ray diffraction.  Crystal data were collected on two 



www.manaraa.com

214 

 

crystals and, in both cases, the single crystal diffraction data was consistent with a 

combined 10% dysprosium content on the yttrium sites of the crystal. One of these data 

sets is included in the crystallographic tables and Y/Dy – O bond distances reported in 

Tables 9.1 and 9.2, respectively.  Since the two crystals selected from the reaction both 

yielded a 10 % doping level of Dy, it was presumed that the other reactions acted 

accordingly with respect to both Dy and Eu doping.  Since the ideal doping level of Eu, 

based on the reactant stoichiometry, was found to be 0.1 %, single crystal analysis, in any 

case, would be unable to determine the presence or amount of such a small quantity of 

europium on the yttrium site. 

 While both polymorphs of K3YSi2O7 are presented, it should be noted that polymorph 

2, which crystallizes in the space group P63/mcm and adopts the structure type predicted 

by Vidican, appears to be the favored phase.  Even in the reaction that crystallizes 

polymorph 1 in the space group P63/mmc, polymorph 2 was always found to be present 

along with another previously reported phase, K5Y2Si4O13F.9.48  Any attempts to modify 

the reaction to favor polymorph 1, always favored one of the other phases present in the 

original reaction as well.  Since the only difference in the reaction conditions is the 

cooling rate, it appears that there is a size effect brought about by the kinetics in the slow 

cooling step of the reaction which favors the formation of polymorph 2; it is however 

possible to crystallize a small amount of polymorph 1 when using a faster cooling rate. 

Fluorescence Spectroscopy 

 Fluorescence data were collected on powders consisting of ground crystals of 

polymorph 2 of K3YSi2O7, as well as on the compositions containing dysprosium and 

europium on the yttrium site (0.1 % Eu; 10 % Dy; 15 % Dy and 0.12 % Eu; 15 % Dy and 
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0.1 % Eu; 10 % Dy and 0.1 % Eu; 9 % Dy and 0.1 % Eu).  The emission scan for the 

parent compound K3YSi2O7 (2), collected using an excitation λ of 254 nm, is shown in 

Figure 9.8.  It can be seen that the parent compound exhibits fluorescence peaks around 

the 370 – 480 nm and 700 – 750 nm ranges.  The strong fluorescence in the UV to blue 

region is likely the cause of the bluish tint to this compound.  The broad fluorescence in 

both ranges causes the white light emission.  Since this compound contains potassium, 

yttrium, silicon, and oxygen, fluorescence is not expected and we can classify polymorph 

2 of K3YSi2O7 as an intrinsic luminescent material.  

Previous examples of intrinsic luminescence in compounds containing yttrium 

have hypothesized that the intrinsic luminescence is caused by the existence of self-

trapped excitons (STEs).9.25-9.27 Throughout the literature, these STEs can be caused by 

distortions in Al or Si tetrahedra9.24, 9.57 or in systems containing rare earth cations where 

an oxygen or anion from a rare earth polyhedron is not also shared with a silicon 

polyhedra.9.25   

As can be seen in Figure 9.6, the luminescent polymorph 2 of K3YSi2O7 has only 

one Si site, which forms a non-distorted tetrahedron and the two unique yttrium sites are 

located in polyhedra that are oxygen bridged to a silicon tetrahedra at every oxygen site.  

Based on the structure, therefore, it is unexpected for polymorph 2 of K3YSi2O7 to exhibit 

intrinsic luminescence and we are unable to make a structural argument that the intrinsic 

luminescence observed arises from STEs. We have to hypothesize, therefore, that STEs 

can occur in the absence of certain structural components as well, which would be 

consistent with the observation of intrinsic luminescence in the other reported yttrium and 

lutetium compounds.9.24-9.27 
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Since the parent K3YSi2O7 (2) composition generated an intrinsic luminescence 

that was too blue to be an improvement in single phase WLED technology, a systematic 

adjustment to the composition, consisting of the addition of Dy and Eu into the structure 

to add yellow and red color components, respectively, was undertaken to achieve white 

light emission.  In the literature, compositions like KLa(MoO4)2,
9.21 Y6WO12,

9.19 

NaGdTiO4,
9.18 KSr4(BO3)3,

9.20 Y2SiO5,
9.22 and ZnWO4

9.23 were all doped with small 

amounts of Dy3+ and Eu3+ like polymorph 2 to achieve tunable white light emission. The 

light emissions of several of our Dy and Eu containing compositions are plotted on the 

CIE diagram shown in Figure 9.9, where the emission data used to plot the CIE diagram 

for 2 and 2-Dy,Eu are shown in Figures 9.10 and 9.11, with visual images of the 

luminescence shown in Figure 9.12.  The CIE coordinates were calculated using the CIE 

Coordinate Calculator Matlab code created by Patil.9.58  The composition that resulted in 

the best white light emission by visual and calculated means, K3Y0.899Dy0.1Eu0.001Si2O7 

(2-Dy,Eu), contains 10 % Dy and 0.1 % Eu.   

The emission spectrum at an excitation λ of 254 nm is shown in Figure 9.13.  In 

this figure, fluorescence is still observed in the violet to blue region like in the parent 

compound; however, there are three new intense peaks at 487 nm, 580 nm, and 625 nm. 

The 487 and 580 nm peaks are attributed to the Dy3+ ion where the 487 nm peak is the 

4F9/2 to 6H15/2 transition and the yellow emission of 580 nm should correspond to the 4F9/2 

to 6H13/2 transition.  The 625 nm peak is in the orange region and should be due to the 5D0 

to 7F2 transition seen in Eu3+ complexes where the europium sits on an inversion 

center.9.59  This implies that in this centrosymmetric structure the europium substitutes 

exclusively onto the octahedral yttrium site, while the single crystal X-ray analysis 
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confirms that the dysprosium substitutes onto both yttrium sites.  The excitation λ of 254 

nm was chosen for the fluorescence data so that the coloring seen in Figure 9.12 matched 

the coloring reported on the CIE diagram.  Additional fluorescence indicated that the 

optimum excitation λ for this system is 280 nm and the optimum emission λ is 401 nm.  

Figures of this data are shown in 9.14 and 9.15. 

From the images and CIE diagrams it is readily apparent that chemical 

composition changes to introduce additional emissions, such as yellow and red, can be 

used to systematically adjust the emission color of this system.  The white light emission 

achieved in this investigation suggests that further research targeted to create new yttrium 

silicates is one promising research direction for solid state lighting.  In particular, the 

synthesis of more intense intrinsic luminescent materials and their fine tuning towards 

white light emission may result in less expensive and more earth abundant phosphors that 

are based on underutilized rare earths.  These yttrium silicates could then be utilized as 

phosphor coatings in current LED technology. 

Conclusion 

 Crystals of two polymorphs of K3YSi2O7 were obtained for different cooling rates 

during the flux based crystal growth process.  Polymorph 2, which crystallizes in the 

space group P63/mcm, exhibits bluish-white intrinsic luminescence.  A systematic 

adjustment to the composition, consisting of the addition of Dy and Eu into the structure 

to add yellow and red color components, respectively, was performed to achieve white 

light emission. A substitution level of 10 % dysprosium and 0.1 % europium resulted in 

the white light emitter K3Y0.899Dy0.1Eu0.001Si2O7. 
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Table 9.1. Crystallographic table for single crystal X-ray data for K3YSi2O7 and 

K3Y0.9Dy0.1Si2O7. 

 

Formula K3YSi2O7 (1) K3YSi2O7 (2) K3Y0.9Dy0.1Si2O7 (2-Dy) 

Formula weight 374.39 374.39 382.12 

Temperature (K) 296(2) 298(2) 303(2) 

Crystal system Hexagonal Hexagonal  Hexagonal 

Space group P 63/mmc P 63/mcm P 63/mcm 

a (Å) 5.76270(10) 9.8450(2) 9.8496(2) 

c (Å) 14.0205(6) 14.3236(3) 14.3292(4) 

V (Å3) 403.22(2) 1202.30(5) 1203.90(6) 

Z 2 6 6 

Density (Mg/m3) 3.084 3.102 3.162 

Absorption 

coefficient (mm-1) 
9.076 9.131 9.334 

Crystal size (mm3) 0.07 × 0.05 × 0.04 0.12 × 0.08 × 0.06  0.10 x 0.06 x 0.02 

2 theta range (°) 5.81 to 70.16 4.78 to 72.69  5.68 to 75.54 

reflections collected 8333 62868 39224 

data/restraints/ 

parameters 
390 / 0 / 19 1092 / 0 / 41 1195 / 0 / 43 

R (int) 0.0404 0.0415 0.0584 

GOF (F2) 1.171 1.102 1.019 

R indices (all data) 
R1 = 0.0291 R1 = 0.0272 R1 = 0.0324 

wR2 = 0.0655 wR2 = 0.0514 wR2 = 0.0509 
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Table 9.2. Y – O bond distances (in Å). 

 

 K3YSi2O7 (1) K3YSi2O7 (2) K3Y0.9Dy0.1Si2O7 (2-Dy) 

Y(1) – O(1) (x6) 2.2499(15) 2.2394(9) 2.2424(11) 

Y(2) – O(2) (x6) - 2.2841(12) 2.2866(13) 
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Figure 9.1.  SEM images (from left to right) of K3YSi2O7 (1), K3YSi2O7 (2), and 

K3Y0.899Dy0.1Eu0.001Si2O7 (2-Dy,Eu). 
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Figure 9.2. PXRD pattern of K3YSi2O7 (2).  The observed pattern is in good 

agreement with the calculated pattern with a small amount of three types of SiO2.  The 

calculated pattern is the red overlay, and the green, blue, and purple overlays are SiO2. 
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Figure 9.3.  PXRD pattern of K3YSi2O7 doped with 10 % Dy and 0.1 % Eu (2-

Dy,Eu).  The observed pattern is in good agreement with the calculated pattern with a 

small amount of SiO2.  The calculated pattern is shown in red and the SiO2 is shown 

in green. 
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Figure 9.4.  View down the a-axis of the 

K3YSi2O7 polymorph 1 where Y is orange, Si is 

blue, K is purple, and O is red. 
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Figure 9.5.  View down the c-axis of polymorph 1 

of K3YSi2O7.  Color scheme follows Figure 9.4. 
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Figure 9.6.  View down the a-axis of the 

K3YSi2O7 polymorph 2.   Color scheme is the 

same as in Figure 9.4. 
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Figure 9.7.  The view down the c-axis of 

polymorph 2 of K3YSi2O7.  Color scheme is the 

same as in Figure 9.4. 
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Figure 9.8.  Emission spectrum at an excitation 

λ of 254 nm for polymorph 2. The cut off at 350 

nm is due to the use of a filter to prevent the 

excitation wavelength to enter the detector. 
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Figure 9.9.  Overall CIE diagram indicating the 

color rendering of polymorph 2 and the various 

doping studies. 
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Figure 9.10.  Emission spectrum used for the CIE 

analysis at an excitation λ of 254 nm for 

polymorph 2. 
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Figure 9.11.  Emission spectrum used for the CIE 

analysis at an excitation λ of 254 nm of 

K3YSi2O7:10%Dy,0.1%Eu (2-Dy,Eu). 
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Figure 9.12.  Visual images when the samples are excited at 254 nm in 

a black box where a = K3YSi2O7, b = 0.1 % doped Eu, c = 10 % Dy, d = 

15 % Dy; 0.12 % Eu, e = 15 % Dy; 0.1 % Eu, f = 10 % Dy; 0.1 % Eu, 

and g = 9 % Dy; 0.1 % Eu. 
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Figure 9.13.  Emission spectrum at an excitation λ 

of 254 nm of K3YSi2O7:10%Dy,0.1%Eu (2-

Dy,Eu).  The cut off at ~350 nm is due to the use 

of a filter to prevent the excitation wavelength to 

enter the detector. 
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Figure 9.14.  Emission spectra of polymorph 2, 2-Dy, 

2-Eu, and 2-Dy,Eu at an excitation λ of 280 nm.  The 

cut off at ~350 nm is due to the use of a filter to 

prevent the excitation wavelength to enter the 

detector. 
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Figure 9.15. Excitation spectra of 2-Dy,Eu at an 

emission λ of 401 nm. 
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Chapter 10 

Fluoride Flux Crystal Growth and Structure Determination of K5RE2FSi4O13 (RE = Y, 

Sc)* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Latshaw, A. M., Myers, A. R., Smith, M. D., zur Loye, H.-C. J. Chem. Cryst., 2015, 

45(4), 207-211. 

Latshaw, A. M., Morrison, G., zur Loye, H.-C. J. Chem. Cryst., 2015, 45(7), 350-354.
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Introduction 

 Flux crystal growth has proven to be an excellent synthetic technique for 

exploratory materials discovery.10.1 The ability to routinely obtain single crystals of new 

compositions, and potentially new structures, makes flux growth an extremely useful 

synthetic method.  Flux crystal growth works with many different fluxes, including alkali 

or alkaline earth halides, hydroxides, or carbonates, that can be used for different crystal 

growth temperature ranges.  Furthermore, some of these fluxes can act as “reactive 

fluxes” where one or more of the flux components are incorporated into the crystal 

products. For example, one method to obtain oxyfluoride single crystals, as described 

herein, is to use molten fluoride fluxes, which are known to act as reactive fluxes in many 

situations.10.1-10.3  

 Rare earth containing silicates, such as K5RE2FSi4O13 (RE = Y, Sc) are of interest 

as potential inorganic hosts into which transition metal and rare earth oxide dopants can 

be incorporated, as well as hosts that can accommodate extensive elemental substitutions 

to create new phosphors for solid state lighting applications. The ionic radii of yttrium 

and scandium10.4 in K5RE2FSi4O13 (RE = Y, Sc) coupled with the ionic radius of 

europium in K5Eu2FSi4O13
10.5 an isostructural composition that has been published 

previously, enable us to define the range of trivalent cations that are accommodated by 

this structure and, thus, to establish the ionic radii size limits of 0.745Å – 0.947Å for the 

lanthanide sites in this composition. This extensive size range suggests that this host 

structure has the ability accommodate other rare earth ions to yield compositions that 

exhibit luminescence and can be fine tuned to a desired coloring.   
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Experimental Section 

Sample Preparation 

 Y2O3 (99.99%) was purchased from Aldrich, Sc2O3 (>99%) was purchased from 

Aran Isles Chemical Inc., KF (99% min.) was purchased from Alfa Aesar, and SiO2 

(99.99%) was purchased from Aldrich as fused pieces and ground to a powder in a ball 

mill. 

Crystals of K5Y2FSi4O13 were prepared by loading Y2O3 (0.5 mmol) and SiO2 (1 

mmol) into a four inch long, ½ inch diameter, silver tube that was welded shut on the 

bottom.  KF (1 g, ~17 mmol) was loaded on top of the reactants as a flux.  The tube was 

then placed in a drying oven under vacuum for one hour before the top of the tube was 

welded shut.  The tube was loaded into a programmable box furnace that was heated to 

900°C where it was held for 12 hrs. before slow cooling to 700°C at a rate of 6°C/hr.  

After it reached 700°C, the furnace was shut off.  The tube was then cut open and the 

products were sonicated in H2O to break up the flux.  The crystals were isolated using 

vacuum filtration. 

 Single crystals of K5Sc2FSi4O13 were prepared by loading Sc2O3 (1 mmol) and 

SiO2 (2 mmol) into a silver crucible.  KF (1g) was then added to the silver crucible as the 

flux.  A silver lid was loosely fitted on the silver crucible before it was placed into a 

programmable furnace that was set to ramp to 900 °C, where it dwelled for 12 hours 

before slow cooling at a rate of 6 °C/h to 700 °C.  After the furnace reached 700 °C it was 

shut off.  Crystals were separated from the flux by sonication in water and then isolated 

by vacuum filtration. 
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Characterization 

Single Crystal X-ray Diffraction 

 X-ray intensity data from a colorless plate crystal of K5Y2FSi4O13 and a rod 

crystal of K5Sc2FSi4O13 were collected at 296(2) and 293(2) K, respectively, using a 

Bruker SMART APEX CCD diffractometer (Mo Kα radiation, λ = 0.71073 Å).10.6  The 

raw area detector data frames were reduced and corrected for absorption effects with 

SAINT+ and SADABS programs.10.6  Final unit cell parameters were determined by 

least-squares refinement of 1842 and 3813 reflections from the data set, respectively.  

The reported atomic coordinates of K5Eu2FSi4O13
10.5 were used as an initial structural 

model.  Difference Fourier calculations and full-matrix least-squares refinement against 

F2 were performed with WinGX. 

 K5RE2FSi4O13 (RE = Y, Sc) crystallizes in the monoclinic system.  The space 

group was found to be P21/m.  The asymmetric unit consists of five potassium atoms, two 

rare earth atoms, four silicon atoms, nine oxygen atoms, and two fluorine atoms.  All 

atoms occupy positions on the mirror plane at x, ¼, z (Wyckoff site 2e) except O(1), 

O(4), O(6), and O(8), which are on general positions (site 4f).  Because of the prolate 

nature of the F site when the K5Sc2FSi4O13 structure was solved using one fluorine site, 

asymmetric unit cell shown in Figure 10.1, the site was split, unlike in the K5Y2FSi4O13, 

which only has one fluorine site.  Freely refining the two site occupancies with a total 

occupancy of one resulted in F(1) and F(2) having occupancy of 0.34 and 0.66, 

respectively.  In the K5Sc2FSi4O13 structure, attempts to fix the occupancies as 50/50 lead 

to an increased R value and a large ADP for F(1). Since the two F sites are only 0.51 Å 

apart, the two sites were refined isotropically.   
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 Further details of the crystal structure investigation on K5RE2FSi4O13 can be 

obtained from the Fachinformationszentrum Karlsruhe using the depository numbers 

429093 for K5Y2FSi4O13 and 429225 for K5Sc2FSi4O13. 

Results and Discussion 

Structure Determination 

 K5RE2FSi4O13 (RE = Y, Sc) crystallizes in the monoclinic space group P21/m and 

is isostructural with K5Eu2FSi4O13.
10.5  Crystallographic data for K5RE2FSi4O13 (RE = Y, 

Sc) can be found in Table 10.1.  The structure contains two unique rare earth sites that 

are six coordinate distorted octahedra.  In K5Y2FSi4O13, the yttrium environments form 

distorted YO5F octahedra where the Y(1) octahedra is corner-shared to the Y(2) 

octahedra through the F(1) site.  The yttrium connected octahedra form AB slabs along 

the c axis where the A slab is the Y(1)O5F octahedra on top of the connected Y(2)O5F 

while the B slab has the Y(2)O5F octahedra on top of the connected Y(1)O5F as depicted 

in Figure 10.2.   In the K5Sc2FSi4O13 compound, the Sc(1) and Sc(2) octahedra corner 

share through the disordered fluorine sites (Figure 10.3).  The scandium octahedra have 

an ScO5F coordination environment where the fluorine site is fractionally occupied, such 

that F(1) is occupied 34(3) % of the time and F(2) 66(3) % percent of the time.  The 

disordered F sites are the major structural difference between the scandium and the 

yttrium and europium analogues.  The disordered fluorine sites result in Sc – F 

interaction lengths of 2.240Å -  2.873Å.  These interaction lengths are longer than other 

known Sc-F bonds, which include 2.01Å (ScF3),
10.7 1.95Å – 2.04Å (KScF4),

10.8 2.00Å – 

2.08Å (K2ScF(Si4O10)),
10.9 and 2.13Å – 2.28Å (ScOF).10.10  Not unexpectedly, the closest 

Sc-F lengths to those observed in our structure is the oxyfluoride ScOF.  Selected 
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interatomic distances for K5RE2FSi4O13 (RE = Y, Sc), along with those of the previously 

published K5Eu2FSi4O13,
10.5 are provided in Table 10.2.   The bond lengths of Sc(1) – 

F(1) and Sc(2) – F(2) are shorter than those observed for the other RE-F analogues 

(Table 10.2), as is expected given the smaller ionic radii of Sc3+.10.4  This suggests that 

the small size of the Sc3+ compared to Y3+ and Eu3+ leads to the disordered fluorine, 

which can no longer adequately bond to both scandium atoms at the same time.  

The silicon atoms are found in SiO4 tetrahedra that corner share to form Si2O7 

units that in turn corner share to form isolated Si4O13 units (Figure 10.4).  Si4O13 

truncated sorosilicate units are not exceptionally common with only two minerals 

(hubeite10.11 and ruizite10.12) exhibiting Si4O13 units.  In literature there are also some 

cases of these truncated silicate units with some examples including 

Ag18(SiO4)2(Si4O13),
10.13 K5(UO2)2[Si4O12(OH)],10.14 and Ba2Gd2(Si4O13).

10.15 The Si2O7 

units are bent, as observed in many other silicates.  For the Y and Sc analogues, 

respectively, the Si(1) – O(3) – Si(2) bond angles are 138.6 ° and 139.3 °, the Si(2) – 

O(7) – Si(3) bond angles are 133.1 ° and 135.5 °, and the Si(3) – O(5) – Si(4) bond 

angles are 135.5 ° and 140.0 °, with the bond angles for the Eu analogue given in Table 

10.3.  The larger bond angles seen in the Sc analogue coincide with longer Sc(1) – Sc(2) 

bond distances, 5.11 Å, for the Eu(1) – Eu(2) distances, 5.04 Å, and Y(1) – Y(2) 

distances,  4.96 Å.  The larger RE – RE distances in the Sc analogue are interesting, 

given its smaller lattice parameters.  It is likely that the direct RE – F – RE bonding in the 

Eu and Y analogues applies chemical pressure to the Si4O13 units.  The breaking of the 

one RE – F bond in the Sc analogue, leading to Sc – F – Sc relieves this chemical 

pressure, allowing for the Si4O13 unit to become more linear (Figure 10.5).  The K(1) ion 
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occupies a site in the channel between the fluorine sites that runs down the b axis, the 

K(2) occupies a site in the channel between the Si(3) tetrahedra down the b axis, K(3) 

occupies a site in the channel between Si(1) and Si(2), almost in line with O(3) down the 

b axis, K(4) occupies a site in the channel between O(2), which is the oxygen that corner 

shares the RE(1) octahedra and the Si(1) tetrahedra, and K(5) occupies a site in the 

channel between O(9), which is the oxygen that corner shares the RE(2) octahedra and 

the Si(4) tetrahedra.  The overall structural image is shown in Figure 10.6. 

Conclusion 

 Crystals of K5RE2FSi4O13 (RE = Y, Sc) have been synthesized using a molten 

potassium fluoride flux.  The small size of Sc3+ has led to fluorine site disorder in this 

composition that is not observed in the Y analogue and the previously reported 

K5Eu2FSi4O13 analogue. 
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Table 10.1. Crystallographic data for K5RE2FSi4O13 (RE = Y, Sc). 

Formula K5Y2FSi4O13 K5Sc2FSi4O13 

Formula weight 712.68 624.78 

Temperature (K) 296(2) 293(2) 

Crystal system Monoclinic Monoclinic 

Space group P 21/m P21/m 

a (Å) 7.1567(12) 6.9681(14) 

b (Å) 5.7627(9) 5.5830(11) 

c (Å) 18.005(3) 17.829(4) 

β (°) 92.396(4) 91.52(3) 

V (Å3) 741.9(2) 693.3(2) 

Z 2 2 

Density (Mg/m3) 3.190 2.993 

Absorption coefficient 

(mm-1) 
9.587 2.909 

Crystal size (mm3) 0.08 x 0.06 x 0.02 0.2 x 0.07 x 0.07 

2 theta range (°) 4.53 to 61.32 2.28 to 56.62 

reflections collected 17921 9525 

data/restraints/parameters 2498 / 0 / 139 1893 / 0 / 140 

R (int) 0.0681 0.0272 

GOF (F2) 1.018 1.322 

R indices (all data) R1 = 0.0497 R1 = 0.0377 

 wR2 = 0.0814 wR2 = 0.0818 
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Table 10.2.  Selected interatomic distances in K5Sc2FSi4O13, K5Y2FSi4O13, and 

K5Eu2FSi4O13. 

 

 K5Sc2FSi4O13 K5Y2FSi4O13 K5Eu2FSi4O13 

Sc(1) – F(1) 2.36(3) Å   

Sc(1) – F(2)  2.87(3) Å   

Sc(2) – F(1) 2.75(3) Å   

Sc(2) – F(2) 2.24(3) Å   

RE(1) – F   2.511(4) Å 2.550(4) Å 

RE(2) - F  2.453(4) Å 2.490(4) Å 

RE(1) – RE(2) 5.11(6) Å 4.964(8) Å 5.040(8) Å 
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Table 10.3.  Selected bond angles for K5Sc2FSi4O13, K5Y2FSi4O13, and K5Eu2FSi4O13. 

 

 K5Sc2FSi4O13 K5Y2FSi4O13 K5Eu2FSi4O13 

Si(1) – O – Si(2) 139.3° 138.6° 135.9° 

Si(2) – O – Si(3)  135.5° 133.1° 132.4° 

Si(3) – O – Si(4) 140.0° 135.5° 135.9° 
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Figure 10.1. Asymmetric unit 

of K5Sc2FSi4O13 when solved 

with only one F site, showing 

the prolate nature of the F site 

if it is not split. 
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Figure 10.2. Crystal structure of K5Y2FSi4O13 

highlighting the slabs created by the Y(1) and 

Y(2) atoms.  Y(1) is shown in orange, Y(2) 

shown in red-violet, silicon is shown in blue, 

potassium is represented by purple spheres, 

fluorine is green, and the oxygens are shown in 

red. 
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Figure 10.3. Structural image of 

K5Sc2FSi4O13 illustrating how 

the Sc(1) and Sc(2) polyhedra 

are corner shared through a 

fluorine.  Both of the disordered 

fluorine atoms are shown where 

F1 is occupied 34(3) % of the 

time and F2 is occupied 66(3) % 

of the time. 
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Figure 10.4. Structural representation of a.) K5Y2FSi4O13 and b.) 

K5Sc2FSi4O13 where the tilt angles of Si – O – Si are shown. Silicon is 

represented in blue and oxygen in red. 
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Figure 10.5.  Visual 

representation of K5Sc2FSi4O13, 

indicating how the bond lengths 

of the Sc octahedra affect the Si – 

O – Si bond angles. Sc is shown 

in orange, Si is shown in blue, F 

is shown in green, and O is 

shown in red and the other 

disordered fluorine atom (F1) is 

omitted for clarity. 
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Figure 10.6. Overall structure of K5Y2FSi4O13, 

representative of K5Sc2FSi4O13.  Potassium is shown in 

purple, RE(1) and RE(2) are shown in orange and red-

violet, respectively, silicon is shown in blue, fluorine is 

shown in green, and oxygen is shown in red. 
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Chapter 11 

Scintillation, Luminescence, and Magnetic Properties of a New Structure Type, 

Cs3LnSi4O10F2 (Ln = Gd, Tb, Dy) 
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Introduction  

Lanthanide containing silicates are an extensively explored area.  With a rigid 

framework due to the silicate structure and the presence of luminescent and magnetic 

centers from the lanthanide elements, lanthanide silicates have many potential uses in 

optical and magnetic applications.  Despite the fact that lanthanide silicates are 

extensively explored, there are very few reports on cesium containing lanthanide 

silicates.  In fact, Cs3EuSi6O15,
11.1 CsDy0.33Si2O5,

11.2 Cs6Nd2Si21O18, Cs3.1NdSi8O19,
11.3 

Cs3LnSi8O19 (Ln = Sc, Y),11.4, 11.5 Cs2Ln[Si4O10]F (Ln = Y, Er),11.6 and Cs2Er[Si6O14]F 11.7 

are the only known single-crystal cesium lanthanide silicates and, furthermore, of those 

only three compositions involve the presence of fluorine.   

In addition to the dearth of cesium lanthanide silicates known, the structure 

reported here is also interesting due to its new silicate framework.  There are many 

silicate units known, including isolated SiO4 tetrahedra, Si2O7 dimers, chains of silicates, 

and silicate rings.  This structure is the first reported case of a tetramer consisting of three 

rings of Si3O9 connected through another silicon tetrahedra.   

 Not only is the field of cesium lanthanide silicates an underexplored area but, it 

appears that it is an important area when considering scintillator materials.  Scintillator 

materials are phosphors that convert the absorbed energy of a single photon of ionizing 

radiation from hard-UV, X-ray, or gamma-ray sources into numerous emitted photons 

with energies in the visible or near visible range.11.8-11.10  As such, scintillator materials 

have applications in medical imaging techniques,11.8 high energy physics,11.11 oil well 

logging,11.12 environmental monitoring, and security and defense.11.13, 11.14 
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 Since scintillators are usually solids where there is a host lattice and an emission 

center (activator), lanthanide-activator-containing silicates are potential scintillator 

materials.   While Ce3+ has been the most heavily studied lanthanide element as the 

emission center for a scintillator material, many other lanthanide elements, including 

Nd3+, Eu2+, Ho3+, Er3+, and Tm3+ have been proposed as strong candidates.11.10  Currently, 

there are many Ce3+ doped silicates on the market due to their high chemical stability, 

fast decay times, and high light yield.  We report new lanthanide silicates where both the 

terbium and europium analogues are scintillators. 

Experimental Section 

Reagents 

 DyCl3  6 H2O (Alfa Aesar, 99.99 %), GdCl3  6 H2O (Alfa Aesar, 99.9 %) CsCl 

(Alfa Aesar, 99 %), TbCl3  6 H2O (Alfa Aesar, 99.9 %), EuCl3  x H2O (Alfa Aesar, 

99.9 %), SiO2 (Alfa Aesar, 1.0 micron, 99.9 %), CsCl (Alfa Aesar, 99 %), and CsF 

(Strem Chemicals, 99+ %) were used as received.  

Synthesis 

 X-ray diffraction quality single crystals of Cs3LnSi4O10F2 (Ln = Gd, Dy) were 

grown by placing LnCl3  x H2O (1 mmol) and SiO2 (1 mmol) into a silver tube crucible 

with a length of 6 – 7 cm.  CsCl (11 mmol) and CsF (9 mmol) were mixed together and 

then loaded onto the reactants.  A silver lid was loosely fitted on the crucible and the 

crucible was loaded into the furnace.  The furnace was set to ramp to 900 ° C in 1.5 h, 

dwell at 900 ° C for 12 h, and then cool to 400 ° C at 6 ° C/h before the furnace was shut 

off.  The crystals were then isolated from the flux by sonication in water and filtering by 

vacuum filtration. 
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 Larger single crystals to be collected for property measurements were grown by 

using a stoichiometric ratio of LnCl3  x H2O (1 mmol) and SiO2 (4 mmol) with 

everything else held constant from the previous growth method.   

Single-Crystal X-ray Diffraction 

 X-ray intensity data from hexagonal plate crystals of the gadolinium and 

dysprosium analogues were collected at 303(2) K using a Bruker D8 QUEST 

diffractometer equipped with a PHOTON100 CMOS area detector and an Incoatec 

microfocus source (Mo Kα radiation, λ = 0.71073 Å).11.15  The data covered 100 % of 

reciprocal space to 2θmax = 72.7 ° (Gd) and 75.8 ° (Dy).  The raw area detector data 

frames were reduced and corrected for absorption effects using the SAINT+ and 

SADABS programs.11.16  Final unit cell parameters were determined by least-squares 

refinements of large sets of reflections taken from the data set.  Subsequent difference 

Fourier calculations and full-matrix least-squares refinement against F2 were performed 

with SHELXL-2014 using the ShelXle and OLEX2 interfaces.11.17, 11.18 

Powder X-ray Diffraction 

 Crystals of each lanthanide were picked and ground.  Powder X-ray diffraction 

(PXRD) data were collected on the ground samples using a Rigaku Ultima IV 

diffractometer with a Cu Kα source (λ = 1.54056 Å) and a D/teX detector.  Data for the 

compounds were collected using a step scan covering the 2θ range of 5 – 65 ° in steps of 

0.02 °.  After PXRD data were collected, a cif file of either Cs3DySi4O10F2 or 

Cs3GdSi4O10F2 was overlaid to determine purity.  The PXRD patterns of the Gd, Tb, and 

Dy analogues are provided in Figure 11.1. 
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Fluorescence Spectroscopy 

 Room temperature excitation and emission spectra of the Tb analogue were 

collected using a Perkin Elmer LS 55 fluorescence spectrometer.  For the compounds, the 

emission spectra were collected over a range of 455 – 800 nm with an excitation λ of 268 

nm and the excitation spectra were collected over a range of 240 - 448 nm with an 

emission λ of 544 nm.   

Magnetic Measurements 

 The DC magnetic susceptibilities of Cs3LnSi4O10F2 (Ln = Gd, Tb, Dy) were 

measured as a function of temperature using a Quantum Design MPMS 3 SQUID 

Magnetometer.  5.72 mg (Gd), 6.05 mg (Tb), and 6.60 mg (Dy) of a ground sample of 

picked crystals were massed on a balance sensitive to 0.01 mg and loaded into a VSM 

powder holder for data collection.  The zero-field cooled magnetic susceptibility was 

measured as a function of temperature between 2 – 300 K in an applied field of 1000 Oe.  

The measured magnetic data were corrected for shape and radial offset effects using the 

method reported by Morrison and zur Loye.11.19 

Results and Discussion 

Synthesis 

 Alkali halide fluxes have been used extensively to synthesize new silicate 

compositions.11.20-11.31  When considering lanthanide containing silicate compositions, 

alkali halide fluxes are a good choice as they readily dissolve both the lanthanide starting 

material and the silicon dioxide.  Furthermore, frequently when using an alkali halide 

flux the alkali or halide elements become incorporated into the product.  Since our 

previous research has illustrated that fluorine appears to play a crucial role in the intensity 
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of fluorescence, CsF was chosen for this reaction.  To lower the melting point of the flux, 

a CsF/CsCl eutectic was ultimately chosen.  When the reaction was performed using off 

stoichiometry ratios of the elements (1 mmol Ln : 1 mmol Si), high quality single crystals 

were obtained.  When, however, the reaction was performed using stoichiometric ratios 

of the elements (1 mmol Ln : 4 mmol Si), larger, easy to pick crystals that were easy to 

pick were obtained.  Crystal pictures of the Eu, Gd, and Tb analogues are shown in 

Figure 11.2. 

Structure 

 Cs3LnSi4O10F2 crystallizes in a new structure type in the triclinic space group P-1, 

where the crystallographic data are presented in Table 11.1 and selected bond distances 

are provided in Table 11.2.  In this structure there are two unique lanthanide sites, four 

unique silicon sites, three unique cesium sites, two unique fluorine sites, and ten unique 

oxygen sites. The silicon tetrahedra in this structure form a new silicate framework.  

Three SiO4 tetrahedra form a Si3O9 ring where three Si3O9 rings are connected through a 

fourth silicon tetrahedra as shown in Figure 11.3.  This silicate framework forms slabs 

where the slabs are separated by the lanthanide octahedra.  The silicate slabs separated by 

the Ln(2)O6 units are closer together than the silicate slabs separated by the Ln(1)O2F4 

octahedra.  This is due to the fact that all lanthanide oxygens are part of the silicate slabs 

causing the Ln(2)O6 octahedra to be tilted more than the Ln(1)O2F4 octahedra.  The 

cesium atoms fill in the spaces in the structure.  A view down the a axis of the structure is 

shown in Figure 11.4 and a view down the c axis is shown in Figure 11.5.  
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Fluorescence Spectroscopy 

 A phase pure sample of the terbium analogue was picked as single crystals from 

the flux reaction.  The crystals were ground and a powder X-ray diffraction pattern was 

obtained to verify purity.  Room temperature emission and excitation scans were 

collected on the terbium analogue as shown in Figure 11.6.  The emission spectrum has 

peaks ranging from the blue region to the red region.  The peaks from 535 – 550 nm are 

indicative of terbium containing compounds, however, there are usually five strong peaks 

in this region.  Future studies with more sample are currently underway to verify these 

preliminary results. 

Scintillation (Preliminary Results) 

 Due to the presence of heavy elements, specifically cesium and terbium, and the 

luminescent nature of the material, preliminary scintillation tests were done on the 

terbium analogue.  Figure 11.7 shows the how the terbium analogue scintillates when 

exposed to copper source X-ray radiation.  Future studies in collaboration with Oak 

Ridge National Laboratory are ongoing to determine how the material scintillates 

quantitatively under numerous radiation sources, including neutrons. 

Magnetic Properties 

 The magnetic data for the Cs3LnSi4O10F2 (Ln = Gd, Tb, Dy) family is presented in 

Table 11.3.  The magnetic samples were obtained by picking hexagonal plate crystals of 

each analogue and grinding them into powders.  The powders were verified to be phase 

pure by powder X-ray diffraction.  The magnetic susceptibilities and inverse 

susceptibilities are shown in Figure 11.8.  All samples are paramagnetic, however, the 

gadolinium analogue does not follow Curie Weiss behavior.  For terbium and 
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dysprosium, the inverse susceptibility was fit over the range of 100 – 300 K. The 

effective moments of 9.63 µB (Tb) and 10.42 µB (Dy), are consistent with the theoretical 

moments of 9.72 µB (Tb) and 10.65 µB (Dy).  

Conclusion 

 We have synthesized a new family of cesium-lanthanide-silicates.  The 

compositions Cs3LnSi4O10F2 (Ln = Gd, Tb, Dy) represent a rare example of a cesium-

lanthanide-silicate and, furthermore, are the first example of a new silicate framework.  

Physical property measurements indicate strong luminescence and strong scintillation 

abilities.  Future studies, including expanding the Cs3LnSi4O10F2 family to include all 

lanthanides, doping multiple lanthanides into the structure to tune scintillation and 

luminescent properties, and expansion by replacing the tetragen from silicon to 

germanium are ongoing and show promise.   
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Table 11.1. Crystallographic table for single crystal X-ray data for Cs3LnSi4O10F2 (Ln = 

Gd, Dy). 

 

Formula Cs3GdSi4O10F2 Cs3DySi4O10F2 

Formula weight 866.34 871.59 

Temperature (K) 300.1 303.9 

Crystal system Triclinic Triclinic 

Space group P-1 P-1 

a (Å) 7.0994(3) 7.0856(2) 

b (Å) 7.1499(3) 7.1360(3) 

c (Å) 16.2572(7) 16.1856(5) 

V (Å3) 711.67(5) 705.72(4) 

Z 2 2 

Density (Mg/m3) 4.043 4.102 

Absorption coefficient (mm-1) 12.621 13.322 

Crystal size (mm3) 0.04 × 0.08 × 0.1 0.03 × 0.07 × 0.08  

2 theta range (°) 5.05 to 72.70 5.07 to 75.75  

reflections collected 41718 63900 

data/restraints/ 

parameters 
6895 / 0 / 186 7633 / 0 / 186 

R (int) 0.0319 0.0315 

GOF (F2) 1.139 1.235 

R indices (all data) R1 = 0.0366 R1 = 0.0281 

 wR2 = 0.0492 wR2 = 0.0658 
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Table 11.2. Ln – O and Ln – F bond lengths. 

 

 Cs3GdSi4O10F2 Cs3DySi4O10F2 

Ln(1) – F(1) (x2) 2.238(2) Å 2.217(3) Å 

Ln(1) – F(2) (x2) 2.240(2) Å 2.215(3) Å 

Ln(1) – O(2) (x2) 2.258(2) Å 2.218(3) Å 

Ln(2) – O(5) (x2) 2.296(2) Å 2.273(3) Å 

Ln(2) – O(7) (x2) 2.291(2) Å 2.261(3) Å 

Ln(2) – O(10) (x2) 2.288(2) Å 2.256(3) Å 
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Table 11.3. Experimental magnetic moments (μeff) compared to calculated moments 

(μcalc) for Cs3LnSi4O10F2 (Ln = Tb, Dy). 

 

Compound Fit Range (K) θ (K) μeff (μB/Ln) μcalc (μB/Ln) 

Cs3TbSi4O10F2 100 – 300 K 0.3 9.63 9.72 

Cs3DySi4O10F2 100 – 300 K 3.9 10.42 10.65 
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Figure 11.1. Powder X-ray diffraction patterns of Cs3LnSi4O10F2 (Ln = Gd, 

Tb, Dy) where the experimental powder is provided in black and the 

calculated pattern of Cs3DySi4O10F2 or Cs3GdSi4O10F2 is overlaid in red. 
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Figure 11.2. Crystal images of Cs3LnSi4O10F2 (Ln = Eu, Gd, Tb). 
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Figure 11.3.  Representation of the new silicate framework where 

Si is shown in blue and oxygen is shown in red.   
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Figure 11.4. View of Cs3LnSi4O10F2 

down the a axis where the lanthanide 

is shown in orange, the silicon in 

blue, cesium in pink, and oxygen in 

red. 
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Figure 11.5. View down the c axis of 

Cs3LnSi4O10F2 where the color 

scheme follows Figure 11.4. 
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Figure 11.6. Fluorescence plots of Cs3TbSi4O10F2 

where the excitation plot at an emission λ of 544 nm 

is shown in blue and the emission plot at an 

excitation λ of 268 nm is shown in red. 
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Figure 11.7. Preliminary scintillation 

tests showing how the Cs3TbSi4O10F2 

scintillates under a Cu X-ray source. 
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Figure 11.8. Magnetic susceptibilities and 

inverse susceptibilities of Cs3GdSi4O10F2 (top), 

Cs3TbSi4O10F2 (middle), and Cs3DySi4O10F2 

(bottom). 
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Appendix A 

Hydroflux Synthesis and Crystal Structure of New Lanthanide Tungstate 

Oxyhydroxides* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Latshaw, A. M., Smith, M. D., Chance, W. M., zur Loye, H.-C. Solid State Sci., 2015, 

42, 14-19.
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Introduction 

 A recent surge in the use of the hydroflux method to synthesize crystals has 

proven that this method is adaptable and can be used for the creation of crystals of 

complex structures that contain diverse elements, including alkali and alkaline earth 

elements, lanthanides, arsenic, manganese, cobalt, nickel, copper, silicon, and tungsten.  

The hydroflux method is quite general and can be used to grow single crystals of oxides, 

hydroxides, oxyhydroxides, and hydrated oxides;A.1-A.7 where it exemplifies one 

important approach for the preparation of single crystals of thermally unstable phases. 

 The hydroflux method uses a very high water content hydroxide flux as the 

“high” temperature solution in which crystals are grown.  By using a wet hydroxide flux, 

the dwelling temperature needed for the reactions is lowered from a range of 320-1300°C 

in hydroxide flux reactionsA.8 to 180-230°C in hydroflux reactions.A.1-A.6  The amount of 

water added is important as it controls the acid-base chemistry of the flux when it is 

molten, following the Lux-Flood concept of oxo-acidity.A.9-A.11  Because the hydroflux 

is a melt and not simply an aqueous solution, there is no significant pressure buildup in 

the reaction vessel.   

 While a significant number of complex oxides containing tungsten are known, 

there are very few reports of tungsten containing oxyhydroxides, especially of those also 

containing an alkali and a lanthanide cation.A.12, A.13  Looking at early transition metal 

examples, there are many instances of single crystals grown as oxides and a few 

examples of oxyhydroxides.  These oxides and oxyhydroxides include but are not limited 

to NaLnTiO4 (Ln = La, Pr, Nd),A.14 K2Hf2O5 and K4Hf5O12,
A.15A5(VO4)3(OH) (A = Sr, 

Ba),A.16 LnKNaMO5 (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb; M = Nb, Ta),A.17-A.19 
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Ln4Na2K2M2O13 (Ln = Nd, Sm, Eu, Gd; M = Nb, Ta),A.20 Rb4Al2Nb35O70,
A.21 

Li3Al(MoO4)3,
A.22 Cs0.33MoO3 and CsFe(MoO4)2,

A.23 KBaMnO4,
A.6 K2Ba(MO4)2 (M = 

Cr, Mo, W),A.3 Ba2MgWO6 and Ba2ZnWO6,
A.24 Sr2Mn(OH)6 and Ba2Mn(OH)6.

A.1 Herein 

we present the hydroflux crystal growth of a series of new tungsten containing 

oxyhydroxides and report their crystal structures.  

Experimental Section 

Sample Preparation 

Reactants. 

 Er2O3, Tm2O3, and Yb2O3 (99.9%) were purchased from Alfa Aesar.  WO3 

(99.8%) was purchased from Alfa Aesar, Na2SiO39H2O (99.9%) was purchased from 

EM Science, and NaOH (ACS grade) was purchased from Macron.   

Synthesis. 

 Crystals of Na5Ln(OH)6WO4 where Ln = Er, Tm, and Yb were grown in a 

hydroflux.  Na2SiO3 (2.93 mmol), Ln2O3 (0.3 mmol), and WO3 (0.7 mmol) were put into 

a hydroflux of NaOH (9.5g) and H2O (7g) and were placed into a 23 mL PTFE-lined 

stainless steel autoclave.  The autoclaves were loaded into a programmable oven at a 

temperature of 230° C.  The oven was programmed to hold at 230° C for 12 hr before 

cooling to 80° C at a rate of 0.1° C/min.  The flux was then washed away from the 

crystals by sonication in methanol.  Crystals were kept in methanol to prevent the 

degradation of the crystals that occurs in moisture over a period of weeks. 
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Characterization 

Single Crystal X-ray Diffraction 

 Crystals of all compounds formed as colorless (Tm, Yb) and pink (Er) rod crystals 

that decompose in methanol over a period of weeks, presumably due to moisture 

sensitivity.  Intensity data for each were collected at 100(2) K using a Bruker SMART 

APEX diffractometer (Mo Ka radiation,  = 0.71073 Å).A.25  The data collections covered 

> 98.7% of reciprocal space to 2θmax = 70º, with an average reflection redundancies of at 

least 4.7.  The raw area detector data frames were reduced and corrected for absorption 

effects with the SAINT+ and SADABS programs.A.25  Final unit cell parameters were 

determined by least-squares refinement of large sets of reflections taken from the data 

sets.  An initial structural model was obtained with direct methods.A.26  Subsequent 

difference Fourier calculations and full-matrix least-squares refinement against F2 were 

performed with SHELXL-2014A.26 using the ShelXle interface.A.27 

 The compounds are isostructural and crystallize in the monoclinic system.  The 

space group I2/a (No. 15) was consistent with the pattern of systematic absences in the 

intensity data and was confirmed by structure solution.  The asymmetric unit consists of 

one tungsten atom, two unique lanthanide atoms, six sodium atoms, 10 oxygen atoms and 

six hydrogen atoms.  Tungsten W(1), sodium atoms Na(1)-Na(4) and all oxygen and 

hydrogen atoms are located on general positions (Wyckoff site 8f).  Both lanthanide 

atoms Ln(1) and Ln(2) and sodium atoms Na(5) and Na(6) are located on two-fold axes 

(site 4e).  In the Tm and Yb crystals, sodium atom Na(6) is disordered over two 4e sites 

with occupancies Na(6A)/Na(6B) = 0.839(5) / 0.161(5) and 0.843(5) / 0.157(5), 

respectively (constrained to sum to one).  For Ln = Er, no two-fold disorder was observed 
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for Na(6).  Only electron density peak is observed in this region, corresponding to the 

major Na(6A) site in the Ln = Tm and Yb crystals.  From trial refinement models site 

Na(6A) refined to an occupancy factor of 0.98(1), and was fixed at full occupancy for the 

final cycles.  All non-hydrogen atoms were refined with anisotropic displacement 

parameters.  No deviation from full occupancy was observed for any of the metal atoms 

except Na(6).  Positions for six hydroxyl hydrogen atoms were located in Fourier 

difference maps, at reasonable distances from the six independent oxygen atoms of the 

two Ln(OH)6 octahedra (O(1)-O(6)).  The hydrogen atoms were refined isotropically 

subject to d(O-H) = 0.84(2) Å distance restraints.  The largest residual electron density 

peak and hole in the final difference maps are: Er, +1.46 and -2.16 e-/Å3, located 0.66 

and 0.74 Å from W(1) and Er(2), respectively; Tm,  +1.59 and -1.47 e-/Å3, both located 

0.69 and 0.76 Å from W(1); Yb, +1.82 and -1.91 e-/Å3, located 0.72 Å and 0.62 Å from 

W(1) and Yb(2), respectively.  Further details of the crystal structure investigation can be 

obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-

Leopoldshafen, Germany (fax:+497247808666; e-mail: crystdata@fiz-karlsruhe.de) on 

quoting the depository numbers CSD-429090, 429091, and 429092 for the Er, Tm, and 

Yb analogues, respectively. 

Powder X-ray Diffraction 

 Powder X-ray diffraction (PXRD) data of a collection of hand-picked crystals 

were collected.  Although hand-picked, the data analysis indicated the presence of 

Na5Ln(OH)6WO4, Na2(WO4)(H2O)2,
A.28 and SiO2.  Even in the Er sample, where only 

pink colored crystals were picked, this mixture was identified in the PXRD data, 
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suggesting that the two other phases are either bound to the crystal surface or form as 

inclusions within the crystals of Na5Ln(OH)6WO4. 

Results and Discussion 

Hydroflux Approach 

 High temperature solutions have been used extensively for materials discovery via 

the crystal growth of complex oxides where, typically, very high quality crystals are 

obtained in the 300 to over 1200 °C temperature range.  While the high temperatures aid 

in the formation of high quality crystals, they limit the discovery process to phases that 

are stable at high temperatures.  To obtain new, low temperature stable phases, requires a 

different approach.  The hydroflux approach is one that enables the preparation of 

compositions that are not thermally stable, such as hydroxides, oxyhydroxides, and 

hydrated oxides.  For example, we have previously used the hydroflux method to prepare 

a series of complex platinum metal containing hydroxide, Sr6NaPd2(OH)17, Li2Pt(OH)6, 

Na2Pt(OH)6, Sr2Pt(OH)8, and Ba2Pt(OH)8, that have limited thermal stability.A.7  

Similarly, the synthesis of complex transition metal based hydroxides and of hydrated 

transition metal oxides was achieved via the hydroflux approach.A.2  The oxyhydroxides 

prepared in this study are another example of materials with limited stability that can be 

obtained as single crystals by operating the crystal growth process at 230 °C.   

Structural Discussion 

 Single crystals of Na5Ln(OH)6WO4 where Ln = Er, Tm, Yb all crystallize in the 

I2/a space group.  The crystallographic data are given in Table A.1 and crystal pictures 

are shown in Figure A.1.  During the structure refinement, the initial indexations of the 

diffraction patterns of each compound repeatedly produced a C-centered monoclinic unit 
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cell with a = 11.23 Å, b = 16.22 Å, c = 6.01 Å, β = 102.0º and V = 1070.1 Å3, i.e., a 

subcell with half the volume of the reported cell (unit cell data for RE = Tm).  Solution in 

C2/m gave good refinement statistics (R1 = 2.4%), but imposed disorder of oxygen atoms 

of the WO4 tetrahedron.  The metal atom positions (except Na(6), see below) and most 

other oxygen atoms are consistent with the smaller cell.  In C2/m, the WO4 group is 

located on the mirror plane with one oxygen disordered across the mirror, showing a 

highly prolate displacement parameter (U3/U1 = 11.7) along with two large residual 

electron density peaks (ca. 2 e-/Å3 each) indicating further splitting of this oxygen 

position.  In C2/m adjacent WO4 groups appear superimposed (related by a unit cell 

translation) along the c axis direction.  Closer inspection of the area detector data frames 

showed many weak reflections unindexable to the C2/m cell, but which could be fit to a 

body centered monoclinic cell with a doubled c axis.  For ease of comparison with the C-

centered subcell, (and because the I-centered cell is actually the conventional cell), an I-

centered monoclinic cell with a = 11.23 Å, b = 16.22 Å, c = 12.01 Å, β = 102.0º, V = 

2139.9 Å3 was selected.  The weaker reflections consistent with the doubled cell arise 

because the WO4 tetrahedra show a small modulation, which generate alternating 

tetrahedra along the c axis, with a repeating unit of two tetrahedra.  The WO4 tetrahedra 

refine with spherical displacement parameters, accompanied by no unusual residual 

electron density.  The WO4 groups are now located on a general position with no imposed 

symmetry and do not superimpose when viewed along the c axis direction, with adjacent 

tetrahedra related by a glide plane.  Another consequence of the enlarged cell is the 

observation of partial or complete occupational ordering of the disordered Na(6) position.  

In the C2/m subcell, this atom is disordered across a mirror plane with equal populations 
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by symmetry.  In the correct I2/a cell this mirror plane is absent, and the major disorder 

fraction now refines to ca. 84% for Ln = Tm and Yb, showing partial ordering.  For Ln = 

Er, no Na(6) disorder was observed as the Na(6A) site refined to 100% occupancy within 

experimental error.  The heavy metal atom substructure, which dominates the X-ray 

scattering, along with five of the six independent sodium atoms and 8 of the 10 

independent oxygen atoms are described by the smaller C2/m cell.  The enlarged I2/a cell 

is caused primarily by modulation of only two oxygen atoms of the WO4 tetrahedron by 

site occupancy ordering of a sodium atom, which is the reason the reflections generating 

this correct cell are weak. 

In the structure solved in the I2/a space group, there are six sodium, two 

lanthanide, one tungsten, ten oxygen, and six hydrogen sites.  Both lanthanide sites form 

isolated octahedra that alternate down the b axis, as shown in Figure A.2.  The tungsten 

site forms isolated tetrahedra that are slightly offset so that they do not perfectly align 

down the c axis (Figure A.3).  The tungsten tetrahedra are boxed in by sodium atoms 

with lanthanide atoms occupying the corners of the boxes, as shown in Figures A.3 and 

A.4.  Figure A.4 also illustrates the split sodium site Na(6A) and Na(6B) seen in the Tm 

and Yb analogues but absent in the Er analogue.  The hydroxides are bound to the 

lanthanide octahedra (Figure A.5).  The overall structure is shown down the c axis in 

Figure A.6.  The average W-O bond distance is 1.78 Å and other select bond distances 

are given in Table A.2.  The charges of the tungsten and lanthanide ions have been 

identified by bond valence sum to be W6+ and Ln3+ for both unique Ln sites with the bond 

valence sums given in Table A.3.   
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Conclusion 

 Three new lanthanide tungsten oxyhydroxides were synthesized by the hydroflux 

method and characterized by single crystal X-ray diffraction. The ability to stabilize this 

series of oxidehydroxides further demonstrates the usefulness of the hydroflux method 

for the preparation of single crystals of low temperature phases. 
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Table A.1. Crystallographic data for Na5Er(OH)6WO4, Na5Tm(OH)6WO4, and Na5Yb(OH)6WO4. 

 

Formula Na5Er(OH)6WO4 Na5Tm(OH)6WO4 Na5Yb(OH)6WO4 

Formula weight 632.11 633.78 637.89 

Temperature (K) 100(2) 100(2) 100(2) 

Crystal system Monoclinic Monoclinic Monoclinic 

Space group I 2/a I 2/a I 2/a 

a (Å) 11.2412(6) 11.2257(7) 11.2024(7) 

b (Å) 16.2074(9) 16.2220(10) 16.1850(10) 

c (Å) 12.0323(7) 12.0133(8) 11.9913(7) 

β (°) 102.025(2) 101.999(2) 102.021(2) 

V (Å3) 2144.1(2) 2139.9(2) 2126.5(2) 

Z 8 8 8 

Density (mg/m3) 3.916 3.935 3.985 

Absorption coefficient (mm-1) 18.734 19.219 19.792 

Crystal size (mm3) 0.12 x 0.10 x 0.05 0.12 x 0.10 x 0.05 0.12 x 0.10 x 0.05 

2 theta range (°) 4.28 to 70.24 4.28 to 70.20 4.29 to 70.38 

GOF (F2) 1.063 1.036 1.022 

R indices (all data) R1 = 0.0374 R1 = 0.0415 R1 = 0.0400 

 wR2 = 0.0636 wR2 = 0.0525 wR2 = 0.0616 
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Table A.2.  Selected Bond Distances (in Å) for Na5Er(OH)6WO4, Na5Tm(OH)6WO4, and 

Na5Yb(OH)6WO4. 
 
 Na5Er(OH)6WO4 Na5Tm(OH)6WO4 Na5Yb(OH)6WO4 

W(1) – O(10) 1.769(3) 1.771(3) 1.769(3) 

W(1) – O(9) 1.778(3) 1.767(3) 1.772(3) 

W(1) – O(8) 1.788(3) 1.781(3) 1.782(3) 

W(1) – O(7) 1.792(3) 1.785(3) 1.788(3) 

Ln(1) – O(2) (x2) 2.220(3) 2.212(3) 2.195(3) 

Ln(1) – O(3) (x2) 2.241(3) 2.228(3) 2.216(3) 

Ln(1) – O(1) (x2) 2.275(3) 2.268(3) 2.261(3) 

Ln(2) – O(6) (x2) 2.207(3) 2.196(3) 2.182(3) 

Ln(2) – O(5) (x2) 2.229(3) 2.222(3) 2.206(3) 

Ln(2) – O(4) (x2) 2.266(3) 2.257(3) 2.242(3) 
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Table A.3.  Bond valence sum calculation results for Na5Ln(OH)6WO4 (Ln = Er, Tm, 

Yb). 

 

 Na5Er(OH)6WO4 Na5Tm(OH)6WO4 Na5Yb(OH)6WO4 

W(1) 5.767 5.857 5.829 

Ln(1) 2.999 3.177 2.988 

Ln(2) 3.09 3.27 3.10 

 



www.manaraa.com

 

 290 

 
 

Figure A.1.  Crystal images of the average size of Na5Er(OH)6WO4 (left), 

Na5Yb(OH)6WO4 (center), and Na5Tm(OH)6WO4 (right) crystals where 

the scale bar below the crystals denotes mm increments. 
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Figure A.2.  Crystal structure of Na5Yb(OH)6WO4, which is 

representative of the three title compounds where the alternating 

isolated lanthanide polyhedra are shown.  Ln(1) is shown in 

orange, Ln(2) is shown in green, tungsten is shown in blue, sodium 

is shown in purple, and oxygen and hydrogen are omitted for 

clarity. 
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Figure A.3.  Crystal structure of Na5Yb(OH)6WO4, which 

is representative of the title compounds, where the isolated 

tungsten tetrahedra are shown down the c axis.  Tungsten is 

shown in blue, Ln(1) is orange, Ln(2) is green, sodium is 

purple, and oxygen and hydrogen are omitted for clarity. 
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Figure A.4.  Crystal structures of Na5Yb(OH)6WO4 (left – also representative of the 

Tm analogue) and Na5Er(OH)6WO4 (right).  The surrounding of the tungsten atoms by 

sodium and lanthanide atoms is shown, along with the splitting of the Na(6) site to 

Na(6A) and Na(6B) in the Yb and Tm analogues.  The Na(6B) site is shown in gray on 

the left image and in both images Na(1)-Na(6A) are shown in purple, Ln(1) is orange, 

Ln(2) is green, W(1) is blue, and oxygen and hydrogen are omitted for clarity. 
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Figure A.5. Crystal structure of 

Na5Er(OH)6WO4, which is representative 

of all analogues, where the hydroxide 

bonds on the Ln(1) and Ln(2) are shown 

in orange and green, respectively.  The 

oxygen atoms are shown in red, the 

hydrogen in light blue, and the tungsten 

shown in dark blue. 
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Figure A.6.  Crystal structures of Na5Yb(OH)6WO4 (left – also representative of 

Tm analogue) and Na5Er(OH)6WO4 where the overall structure is shown down 

the c axis.  Ln(1) is shown in orange, Ln(2) is green, tungsten is dark blue, 

Na(1)-Na(6A) are purple, Na(6B) is gray, oxygen is red, and hydrogen is light 

blue.   
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